framework.py 82.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
26
import subprocess
Q
qiaolongfei 已提交
27

M
minqiyang 已提交
28
from .. import compat as cpt
29
from .proto import framework_pb2
30
try:
P
peizhilin 已提交
31
    if os.name == 'nt':
P
peizhilin 已提交
32
        import sys
P
peizhilin 已提交
33 34 35 36 37
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

38
    from . import core
39
except ImportError as e:
P
peizhilin 已提交
40
    if os.name == 'nt':
41
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
42
        raise ImportError(
43 44 45 46 47
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
48 49 50 51 52 53
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
54
except Exception as e:
55
    raise e
56
from . import unique_name
Y
Yu Yang 已提交
57

58
__all__ = [
59 60 61 62
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
63
    'name_scope',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

72 73 74 75 76 77 78 79 80 81
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
122

123 124 125 126
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
127 128
          with name_scope("attention"):
             ...
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
148 149 150
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
151 152 153 154


def grad_var_name(var_name):
    """
155 156
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
157 158 159
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
160

161
def convert_np_dtype_to_dtype_(np_dtype):
162 163
    """
    Convert the data type in numpy to the data type in Paddle
164

165
    Args:
166
        np_dtype(np.dtype): the data type in numpy.
167

168 169
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
170 171

    """
172 173
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
174
        return core.VarDesc.VarType.FP32
175
    elif dtype == np.float64:
176
        return core.VarDesc.VarType.FP64
177
    elif dtype == np.float16:
178
        return core.VarDesc.VarType.FP16
179
    elif dtype == np.int32:
180
        return core.VarDesc.VarType.INT32
181
    elif dtype == np.int16:
182
        return core.VarDesc.VarType.INT16
183
    elif dtype == np.int64:
184
        return core.VarDesc.VarType.INT64
185
    elif dtype == np.bool:
186
        return core.VarDesc.VarType.BOOL
187 188
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
189 190
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
191 192
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
193
    else:
M
minqiyang 已提交
194
        raise ValueError("Not supported numpy dtype %s" % dtype)
195 196 197


def dtype_is_floating(dtype):
198 199 200
    """
    Check the data type is floating or not.
    Args:
201
        dtype(np.dtype|core.VarDesc.VarType): data type.
202 203 204 205 206
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
207
    if not isinstance(dtype, core.VarDesc.VarType):
208 209
        dtype = convert_np_dtype_to_dtype_(dtype)

210 211 212 213
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
214 215


Y
Yang Yang(Tony) 已提交
216
def _debug_string_(proto, throw_on_error=True):
217 218 219 220 221 222 223 224 225 226 227
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
228
    error_fields = list()
Y
Yang Yang(Tony) 已提交
229
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
230 231
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
232 233 234
    return proto.__str__()


X
Xin Pan 已提交
235
class Variable(object):
236
    """
237 238 239
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
240
    two variables in different blocks could have the same name.
241

242 243
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
244

245
    Most of a Variable's member variables can be setted to be None. It mean
246
    it is not available or will be specified later.
247 248

    Args:
249
        block(Block): The block that the variable belongs to.
250 251
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
252 253
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
254
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
255
            Some kinds of variable do not contain shape, just set it to None.
256 257 258
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
259
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
260
            series data.
261
            Default: None
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
284 285
    """

Y
Yu Yang 已提交
286 287
    def __init__(self,
                 block,
Y
Yu Yang 已提交
288
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
289 290 291 292
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
293
                 capacity=None,
Q
QI JUN 已提交
294
                 persistable=None,
F
fengjiayi 已提交
295
                 error_clip=None,
Y
Yu Yang 已提交
296
                 stop_gradient=False,
F
fengjiayi 已提交
297
                 is_data=False,
Y
Yu Yang 已提交
298
                 **kwargs):
Y
Yu Yang 已提交
299
        self.block = block
F
fengjiayi 已提交
300
        self.error_clip = error_clip
Y
Yu Yang 已提交
301 302

        if name is None:
Y
Yu Yang 已提交
303
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
304
        is_new_var = False
M
minqiyang 已提交
305
        name = cpt.to_text(name)
M
minqiyang 已提交
306
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
307 308

        if self.desc is None:
M
minqiyang 已提交
309
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
310
            is_new_var = True
Y
Yu Yang 已提交
311

Y
Yu Yang 已提交
312 313 314 315 316 317 318 319
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
320
        if shape is not None:
Y
Yu Yang 已提交
321
            if is_new_var:
322
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
323 324 325 326 327 328 329 330
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
331
        if dtype is not None:
332
            if not isinstance(dtype, core.VarDesc.VarType):
333
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
334
            if is_new_var:
F
fengjiayi 已提交
335
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
336
            else:
F
fengjiayi 已提交
337
                old_dtype = self.dtype
Q
QI JUN 已提交
338
                if dtype != old_dtype:
Y
Yu Yang 已提交
339 340 341 342 343
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
344 345

        if lod_level is not None:
Y
Yu Yang 已提交
346
            if is_new_var:
347
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
348 349 350 351 352 353 354
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
355 356 357 358 359 360 361 362 363 364 365
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

366 367 368 369 370 371 372 373
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
374
        self.block.vars[name] = self
Y
Yu Yang 已提交
375
        self.op = None
M
minqiyang 已提交
376
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
377
        self.is_data = is_data
X
Xin Pan 已提交
378
        if _in_imperative_mode():
M
minqiyang 已提交
379 380 381
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
382
            self._ivar.desc = self.desc
383
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
384

385
    def _numpy(self):
M
minqiyang 已提交
386
        tensor = self._ivar.value().get_tensor()
387 388 389
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
390
        self._ivar._run_backward()
391 392

    def _gradient(self):
M
minqiyang 已提交
393
        return np.array(self._ivar._grad_value())
394

X
Xin Pan 已提交
395 396
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
397

398
    def __str__(self):
Y
Yang Yang(Tony) 已提交
399 400
        return self.to_string(True)

F
update  
fengjiayi 已提交
401
    def to_string(self, throw_on_error, with_details=False):
402 403 404 405
        """
        Get debug string.

        Args:
406 407
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
408
            with_details(bool): more details about variables and parameters
409 410
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
411

412 413
        Returns:
            str: The debug string.
414
        """
F
update  
fengjiayi 已提交
415 416
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
417
        protostr = self.desc.serialize_to_string()
418
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
419 420 421 422
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
423 424
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
425
        return res_str
426 427 428

    __repr__ = __str__

W
Wu Yi 已提交
429
    def _set_desc(self, input):
430 431 432 433 434 435 436 437 438
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
439 440
        self.desc = input

441 442 443 444 445 446 447 448
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

449 450 451 452
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
453 454 455 456
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
457 458
    @property
    def name(self):
M
minqiyang 已提交
459
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
460

T
typhoonzero 已提交
461 462 463 464
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
465 466 467
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
468
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
469 470

    @property
F
fengjiayi 已提交
471 472
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
473 474 475

    @property
    def lod_level(self):
476
        return self.desc.lod_level()
Y
Yu Yang 已提交
477

Y
Yu Yang 已提交
478 479 480 481
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
482
    def _set_error_clip(self, error_clip):
483 484 485 486 487 488 489 490 491
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
492 493
        self.error_clip = error_clip

Y
Yu Yang 已提交
494

F
fengjiayi 已提交
495 496 497
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
498

499 500
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
501 502 503 504
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
505
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
506 507 508 509 510
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
511 512 513 514
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
515 516 517 518 519 520 521 522 523
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
524
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
525 526 527 528 529 530
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
531 532 533 534 535 536 537 538
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
539 540
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
541 542
        return self.op_proto_map[type]

543 544 545 546
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
547
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
548
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
549 550
        }

F
fengjiayi 已提交
551

X
Xin Pan 已提交
552
class Operator(object):
553
    """
554 555 556 557 558 559 560
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
561
        type(str): The type of operator. Default None.
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
582
        Block.append_op or Block._prepend_op instead.
583 584 585 586 587 588 589 590 591 592

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
593
    """
594 595 596
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
597 598
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
599
    }
600

Y
Yu Yang 已提交
601 602
    def __init__(self,
                 block,
Y
Yu Yang 已提交
603
                 desc,
Y
Yu Yang 已提交
604 605 606
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
607
                 attrs=None):
Y
Yu Yang 已提交
608
        self.block = block
Y
Yu Yang 已提交
609
        self.desc = desc
G
gongweibao 已提交
610 611 612 613 614
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
615 616 617 618
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
619 620
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
621 622 623

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
624 625
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
626

G
gongweibao 已提交
627 628
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
629

F
fengjiayi 已提交
630 631 632 633 634
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
635 636 637 638 639
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
640
        self.desc.set_type(type)
F
fengjiayi 已提交
641
        proto = OpProtoHolder.instance().get_op_proto(type)
642

643 644 645
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
646 647
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
648
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
649 650
                    return True
            return False
Q
QI JUN 已提交
651

Y
Yang Yang(Tony) 已提交
652 653 654 655 656 657 658
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
659 660 661 662
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
663 664
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
665 666 667
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
668
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
669
                            in_arg_names.append(arg)
670 671
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
672
                        else:
M
minqiyang 已提交
673
                            in_arg_names.append(cpt.to_text(arg.name))
674
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
675 676
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
677

Y
Yu Yang 已提交
678
        if outputs is not None:
679
            for m in proto.outputs:
Q
qingqing01 已提交
680 681 682 683 684 685
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
686
            for out_proto in proto.outputs:
Q
qingqing01 已提交
687 688
                if out_proto.name not in outputs:
                    continue
689 690 691 692
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
693 694
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
695 696 697
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
698
                    out_arg_names.append(cpt.to_text(arg.name))
699 700
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
701

G
gongweibao 已提交
702 703
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
704
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
705
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
706
                attr_name = attr.name
G
gongweibao 已提交
707
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
708
                    continue
G
gongweibao 已提交
709
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
710 711
                self._update_desc_attr(attr_name, attr_val)

712
        self.desc.check_attrs()
M
minqiyang 已提交
713

W
Wu Yi 已提交
714
        if self._has_kernel(type):
Q
QI JUN 已提交
715
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
716
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
717

X
Xin Pan 已提交
718 719 720
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
721
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
722
            if inputs is not None:
X
Xin Pan 已提交
723 724 725 726 727 728
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
729
            if outputs is not None:
X
Xin Pan 已提交
730 731 732 733 734
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
735

W
Wu Yi 已提交
736
    def _has_kernel(self, op_type):
737 738
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
739
    def to_string(self, throw_on_error):
740
        """
741 742
        Get debug string.

743
        Args:
744 745
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
746

747 748
        Returns:
            str: The debug string.
749 750

        """
751
        protostr = self.desc.serialize_to_string()
752
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
753 754 755 756
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
757 758 759

    __repr__ = __str__

F
fengjiayi 已提交
760 761 762 763 764
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
765
        """
766
        Get the input arguments according to the input parameter name.
767

768 769
        Args:
            name(str): The input parameter name.
770

771 772 773
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
774
        """
F
fengjiayi 已提交
775 776
        return self.desc.input(name)

W
Wu Yi 已提交
777
    def _rename_input(self, old_name, new_name):
778 779 780 781 782 783 784 785 786 787
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
788
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
789

W
Wu Yi 已提交
790
    def _rename_output(self, old_name, new_name):
791 792 793 794 795 796 797 798 799 800
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
801
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
802

F
fengjiayi 已提交
803 804 805 806
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
807 808 809 810 811 812 813 814
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
815
    def output(self, name):
816
        """
817
        Get output arguments by the output parameter name.
818

819 820
        Args:
            name(str): The output parameter name.
821

822 823 824
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
825
        """
F
fengjiayi 已提交
826 827 828 829 830 831
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

832 833 834 835 836 837 838 839
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
840
    def has_attr(self, name):
841
        """
842 843
        Whether this Operator has the attribute with name or not.

844
        Args:
845
            name(str): the attribute name.
846

847 848
        Returns:
            bool: True if has this attribute.
849 850

        """
F
fengjiayi 已提交
851 852 853
        return self.desc.has_attr(name)

    def attr_type(self, name):
854
        """
855
        Get the type of attribute by attribute's name.
856

857 858
        Args:
            name(str): the attribute name.
859

860 861
        Returns:
            core.AttrType: the attribute type.
862
        """
F
fengjiayi 已提交
863 864
        return self.desc.attr_type(name)

W
Wu Yi 已提交
865
    def _set_attr(self, name, val):
866 867 868 869 870 871 872 873 874 875
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
889 890
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
891 892
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
893
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
894 895 896 897
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
898
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
899

F
fengjiayi 已提交
900 901 902 903 904
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
905
        """
906 907
        Get the attribute by name.

908
        Args:
909
            name(str): the attribute name.
910

911 912
        Returns:
            bool|int|str|float|list: The attribute value. The return value
913 914
            can be any valid attribute type.
        """
F
fengjiayi 已提交
915
        return self.desc.attr(name)
Y
Yu Yang 已提交
916

W
Wu Yi 已提交
917
    def _block_attr_id(self, name):
918
        """
G
gongweibao 已提交
919
        Get the block attribute's id by name.
920

921 922
        Args:
            name(str): the attribute name.
923

924 925
        Returns:
            int: the block index.
926
        """
W
Wu Yi 已提交
927
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
928

W
Wu Yi 已提交
929
    def _block_attr(self, name):
G
gongweibao 已提交
930 931 932 933 934 935 936 937 938 939
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
940
        id = self._block_attr_id(name)
G
gongweibao 已提交
941 942 943
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
944
    def _blocks_attr(self, name):
G
gongweibao 已提交
945 946 947 948 949 950 951 952 953 954
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
955
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
956 957 958 959 960
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
961
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
962 963 964 965 966 967 968 969 970 971
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
972
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
973

J
JiayiFeng 已提交
974
    def all_attrs(self):
F
fengjiayi 已提交
975
        """
976 977 978
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
979
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
980 981 982 983
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
984 985
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
986
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
987 988 989
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
990
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
991 992 993 994
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
995 996
        return attr_map

Y
Yu Yang 已提交
997

Y
Yu Yang 已提交
998
class Block(object):
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1013
        use `Program._create_block()` to create a block.
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1028
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1029
        self.desc = program.desc.block(idx)
1030
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1031
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1032
        self.program = program
1033
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1034

1035
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1036 1037
        return self.to_string(True)

F
fengjiayi 已提交
1038 1039
    def to_string(self, throw_on_error, with_details=False):
        """
1040 1041
        Get debug string.

F
fengjiayi 已提交
1042 1043
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1044
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1045
            with_details(bool): more details about variables and parameters
1046 1047
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1048

1049 1050
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1051 1052 1053 1054
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1055
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1056 1057
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1058
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1059
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1060
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1061
            for op in self.ops:
F
fengjiayi 已提交
1062 1063
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1064 1065 1066
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1067 1068
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1069 1070
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1071 1072 1073

    __repr__ = __str__

Y
Yu Yang 已提交
1074 1075
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1076
        return self.desc.parent
Y
Yu Yang 已提交
1077

Y
Yu Yang 已提交
1078 1079 1080 1081
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1082
    def _set_forward_block_idx(self, idx):
1083 1084 1085 1086 1087 1088 1089 1090 1091
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1092
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1093

Y
Yu Yang 已提交
1094 1095
    @property
    def idx(self):
Y
Yu Yang 已提交
1096
        return self.desc.id
Y
Yu Yang 已提交
1097

Q
Qiao Longfei 已提交
1098
    def var(self, name):
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1112
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1113 1114 1115
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1116 1117
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1118
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1119
        return v
Q
Qiao Longfei 已提交
1120

X
Xin Pan 已提交
1121
    def _find_var_recursive(self, name):
1122 1123 1124 1125 1126 1127 1128
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1129
            Variable: the Variable with the giving name. Or None if not found.
1130
        """
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1155
        return None
Y
Yu Yang 已提交
1156

X
Xin Pan 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1176

Q
Qiao Longfei 已提交
1177
    def all_parameters(self):
1178
        return list(self.iter_parameters())
1179

1180
    def iter_parameters(self):
M
minqiyang 已提交
1181
        return (item[1] for item in six.iteritems(self.vars)
1182
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1183

Y
Yu Yang 已提交
1184
    def create_var(self, *args, **kwargs):
1185
        var = Variable(block=self, *args, **kwargs)
1186 1187
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1188
        return var
Y
Yu Yang 已提交
1189

Q
Qiao Longfei 已提交
1190 1191 1192
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1193
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1194 1195
        """
        Rename variable in vars and ops' inputs and outputs
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1208
        """
M
minqiyang 已提交
1209 1210
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1211

T
typhoonzero 已提交
1212
        if not self.has_var(name):
1213
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1214 1215
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1216
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1217 1218 1219 1220 1221 1222 1223
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1224
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1225 1226 1227 1228
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1229
        orig_var_type = v.type
M
minqiyang 已提交
1230
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1231
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1232
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1233
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1234 1235 1236 1237
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1238
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1239 1240 1241 1242 1243 1244 1245
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1246
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1247 1248
            var = Variable(
                self,
T
typhoonzero 已提交
1249
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1250 1251 1252 1253
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1254
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1255 1256 1257
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1258
        self._sync_with_cpp()
1259
        return var
T
typhoonzero 已提交
1260

W
Wu Yi 已提交
1261 1262
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1263
        self.desc._remove_var(cpt.to_bytes(name))
1264 1265
        del self.vars[name]

Y
Yu Yang 已提交
1266 1267
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1268
        param = Parameter(global_block, *args, **kwargs)
1269
        if 'initializer' in kwargs:
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1290
        return param
Y
Yu Yang 已提交
1291

Y
Yu Yang 已提交
1292
    def append_op(self, *args, **kwargs):
1293 1294 1295 1296 1297 1298
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1299
        op_desc = self.desc.append_op()
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1312
        if _in_imperative_mode():
1313
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1314
                                       stop_gradient)
Y
Yu Yang 已提交
1315

W
Wu Yi 已提交
1316
    def _insert_op(self, index, *args, **kwargs):
1317 1318 1319 1320 1321 1322 1323 1324 1325
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1326 1327
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1328 1329 1330 1331
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1332
    def _remove_op(self, index):
1333 1334 1335 1336 1337 1338 1339 1340 1341
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1342 1343
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1344 1345
        del self.ops[index]

W
Wu Yi 已提交
1346
    def _slice_ops(self, start, end):
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1357
        return self.ops[start:end]
Y
Yancey1989 已提交
1358

W
Wu Yi 已提交
1359 1360
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1361 1362 1363 1364 1365 1366 1367
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1368
        self.ops.insert(0, op)
1369
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1370 1371
        return op

W
Wu Yi 已提交
1372
    def _sync_with_cpp(self):
1373
        """
1374 1375
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1376
        """
Q
Qiao Longfei 已提交
1377 1378 1379 1380 1381
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1382
        # sync variables removed from c++ end
1383
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1384
            if not self.desc.find_var(cpt.to_bytes(var)):
1385 1386
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1387
        # sync operators from cpp
1388 1389 1390 1391
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1408 1409 1410 1411 1412

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1413
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1414 1415 1416 1417 1418 1419 1420

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1434 1435 1436 1437
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1438
    def _copy_param_info_from(self, other):
1439
        """
1440 1441
        Copy the information of parameters from the other block.

1442
        Args:
1443 1444 1445 1446 1447
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1448 1449 1450 1451 1452

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1453 1454
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1455
        for p in other.iter_parameters():
1456 1457 1458
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1459
                raise ValueError("_copy_param_info_from should be invoked with "
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1472
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1473
                error_clip=p.error_clip,
1474 1475 1476
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1477
    def _clone_variable(self, var):
1478 1479
        """
        Clone a variable into current block.
1480

1481 1482 1483 1484
        Args:
            var: the variable to be cloned.

        Returns:
1485
            Variable: the new  variable cloned from 'var' in current block.
1486 1487
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1488 1489 1490 1491 1492
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1493 1494
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1495
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1496 1497 1498 1499 1500 1501
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1502 1503
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1504 1505 1506 1507 1508 1509 1510
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1511 1512
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1513
        return ret_var
1514

Y
Yu Yang 已提交
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
class IrGraph(object):
    """
    IrGraph uses core.Graph as the delegation to accomplish the manipulation.
    """

    def __init__(self, graph, for_test=False):
        """
        Construct the IrGraph using core.Graph.
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
        return self._for_test

    def all_parameters(self):
        param_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                param_nodes.add(node)
        return param_nodes

    def all_vars(self):
        return {node for node in self.graph.nodes() if node.is_var()}

    def all_ops(self):
        return {node for node in self.graph.nodes() if node.is_op()}

    def create_param_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
        for attr, value in attrs.iteritems():
            self._update_desc_attr(op_desc, attr, value)
        for input_name, var_nodes in inputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
        for output_name, var_nodes in outputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
        assert old_input_node in self.graph.nodes() and new_input_node in self.graph.nodes() and \
            op_node in self.graph.nodes(), 'Th three arguments must be in the graph nodes.'
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
            'Th two arguments must be in the graph nodes.'
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
        if not isinstance(remove_nodes, set):
            remove_nodes = set(remove_nodes)
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

    def draw(self, save_path, name, marked_nodes=None):
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

        remove_ctr_vars = set()
        ops_num = 0
        for node in self.graph.nodes():
            if node.is_ctrl_var():
                remove_ctr_vars.add(node)
            elif node.is_op():
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        self.safe_remove_nodes(remove_ctr_vars)
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
        convert_pass = core.get_pass('graph_to_program_pass')
        convert_pass.set('program', Program().desc)
        convert_pass.apply(self.graph)
        desc = convert_pass.get_program('program')
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1664
class Program(object):
D
dzhwinter 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1676
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1677 1678

    Returns:
Y
yuyang18 已提交
1679
        A empty program.
D
dzhwinter 已提交
1680 1681

    Examples:
Y
yuyang18 已提交
1682 1683 1684 1685 1686 1687
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1688 1689 1690

    """

1691 1692
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1693 1694
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1695
        self._seed = 0
Y
yuyang18 已提交
1696
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1697
        self._op_role_var = []
T
tangwei12 已提交
1698 1699 1700 1701

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1702
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1703
        self._endpoints = []
1704
        self._trainers_endpoints = []
T
tangwei12 已提交
1705
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1706 1707 1708

    @property
    def op_role(self):
Y
yuyang18 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1722 1723 1724 1725 1726 1727 1728 1729
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1730 1731 1732 1733 1734 1735 1736
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1737 1738 1739 1740
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1741
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1742 1743

    @contextlib.contextmanager
W
Wu Yi 已提交
1744
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1745 1746 1747 1748 1749 1750 1751
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1752
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1753 1754 1755 1756

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1757
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1758 1759
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1760 1761 1762
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1763 1764
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1765 1766 1767 1768
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1769
        yield
X
Xin Pan 已提交
1770 1771
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1772

1773
    @contextlib.contextmanager
X
Xin Pan 已提交
1774
    def _lr_schedule_guard(self, is_with_opt=False):
1775 1776 1777 1778 1779 1780 1781
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1782 1783 1784 1785
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1786 1787 1788 1789 1790 1791 1792

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1793 1794 1795 1796

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1797 1798
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1799 1800
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1801 1802 1803
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1804 1805
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1806

1807
    def __str__(self):
Y
yuyang18 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1817 1818
        return self.to_string(True)

F
fengjiayi 已提交
1819 1820 1821
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1822

F
fengjiayi 已提交
1823
        Args:
Y
yuyang18 已提交
1824 1825
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1826

Y
yuyang18 已提交
1827 1828 1829 1830
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1831 1832
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1833 1834 1835 1836

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1847 1848
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1849 1850
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1851

W
Wu Yi 已提交
1852
    def _get_desc(self):
Y
yuyang18 已提交
1853 1854 1855 1856 1857 1858 1859
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1860 1861
        return self.desc

X
version  
Xin Pan 已提交
1862 1863 1864
    def _version(self):
        return self.desc._version()

1865
    def clone(self, for_test=False):
Y
yuyang18 已提交
1866 1867 1868
        """
        Create a new, duplicated program.

1869

Y
yuyang18 已提交
1870 1871 1872 1873
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1874

Y
yuyang18 已提交
1875 1876 1877 1878
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1879 1880 1881 1882 1883
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1884 1885

        Args:
Y
yuyang18 已提交
1886 1887
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1888

D
dzhwinter 已提交
1889
        Returns:
Y
yuyang18 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1943 1944
        """
        if for_test:
X
Xin Pan 已提交
1945
            p = self._inference_optimize(prune_read_op=False)
1946
        else:
1947
            p = Program()
G
gongweibao 已提交
1948 1949
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1950
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1951 1952 1953
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1954 1955 1956 1957

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1958
            p._sync_with_cpp()
1959

W
Wu Yi 已提交
1960
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1961
        p._copy_data_info_from(self)
1962
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1963
        return p
1964

W
Wu Yi 已提交
1965
    def _prune(self, targets):
Y
yuyang18 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1981 1982 1983 1984 1985 1986
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1987 1988
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1989
                    # and we need to find the current op that generate this
1990 1991 1992 1993 1994 1995 1996 1997
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1998
                    t = t.op
1999 2000 2001 2002
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2003
                else:
2004 2005
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2006 2007 2008 2009

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2010 2011 2012
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2013
        res._sync_with_cpp()
2014 2015
        return res

X
Xin Pan 已提交
2016
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2017
        """
F
fengjiayi 已提交
2018 2019 2020 2021 2022
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2023
        3. change the :code:`is_test`
Y
yuyang18 已提交
2024 2025 2026
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2027
        Args:
X
Xin Pan 已提交
2028 2029
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2030

Y
yuyang18 已提交
2031 2032 2033 2034 2035 2036
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2037
        res = Program()
2038
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2039 2040 2041 2042

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2043
        if prune_read_op:
2044 2045 2046 2047 2048 2049 2050 2051 2052
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2053
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2054 2055

        # change all `is_test` attributes to True
M
minqiyang 已提交
2056
        for i in six.moves.range(res.desc.num_blocks()):
2057
            block = res.desc.block(i)
M
minqiyang 已提交
2058
            for j in six.moves.range(block.op_size()):
2059 2060
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2061
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2062 2063 2064
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2065
        res._sync_with_cpp()
2066 2067
        return res

2068 2069
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2070 2071 2072 2073 2074 2075 2076
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2077
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2078 2079 2080 2081

        Returns:
            Program: A deserialized program desc.
        """
2082 2083
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2084
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2085
        p._sync_with_cpp()
2086
        return p
Y
Yu Yang 已提交
2087

2088
    @staticmethod
2089
    def _construct_from_desc(desc):
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2105 2106
    @property
    def random_seed(self):
Y
yuyang18 已提交
2107 2108 2109 2110 2111 2112
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2113 2114
        return self._seed

Q
qiaolongfei 已提交
2115 2116
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2117 2118 2119
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2120 2121
        return self.desc.num_blocks()

D
dzhwinter 已提交
2122 2123 2124 2125 2126 2127
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2128
    def __repr__(self):
2129
        return self.__str__()
2130

Y
Yu Yang 已提交
2131
    def global_block(self):
Y
yuyang18 已提交
2132 2133 2134
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2135 2136
        return self.blocks[0]

Q
Qiao Longfei 已提交
2137
    def block(self, index):
Y
yuyang18 已提交
2138 2139 2140 2141 2142 2143 2144 2145
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2146 2147
        return self.blocks[index]

Y
Yu Yang 已提交
2148
    def current_block(self):
Y
yuyang18 已提交
2149 2150 2151 2152
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2153 2154
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2155
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2166
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2167 2168 2169
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2170 2171 2172 2173
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2174
    def _rollback(self):
Y
yuyang18 已提交
2175 2176 2177 2178 2179
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2180 2181
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2182
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2193 2194 2195
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2196
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2197

W
Wu Yi 已提交
2198
    def _copy_param_info_from(self, other):
2199
        """
2200
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2201

Y
yuyang18 已提交
2202 2203 2204
        Notes: This is a very low level API. Users should not invoke it
        directly.

2205 2206 2207 2208 2209 2210 2211
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2212
            raise TypeError("_copy_param_info_from should be invoked with "
2213 2214 2215
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2216
            raise ValueError("_copy_param_info_from should be invoked with two "
2217
                             "program, with represent the same topology")
W
Wu Yi 已提交
2218
        self.global_block()._copy_param_info_from(other.global_block())
2219

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2239
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2240 2241
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2242

Y
yuyang18 已提交
2243 2244 2245
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2246 2247 2248 2249 2250 2251 2252
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2253
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2254 2255 2256
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2257
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2258
                             "program, with represent the same topology")
2259
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2260 2261 2262
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2263
    def list_vars(self):
Y
yuyang18 已提交
2264 2265 2266 2267 2268 2269
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2270
        for each_block in self.blocks:
2271
            for each_var in list(each_block.vars.values()):
2272 2273
                yield each_var

Y
Yu Yang 已提交
2274

Y
Yu Yang 已提交
2275
class Parameter(Variable):
2276
    """
2277
    Parameter is derived from Variable. A parameter is a persistable
2278
    Variable, and will be updated by optimizers after each iteration.
2279
    The training of a neural network is essentially the updating of
2280 2281
    its parameters.

2282
    Relative to a general Variable, a Parameter has several its own
2283 2284
    member variables:

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2297 2298
    """

Y
Yu Yang 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2309 2310 2311

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2312 2313 2314 2315
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2316 2317
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2318
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2319

W
wanghaoshuang 已提交
2320
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2321

F
fengjiayi 已提交
2322 2323 2324
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2325 2326 2327
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2328

F
update  
fengjiayi 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2343
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2344
            for attr_name in additional_attr:
2345 2346
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2347 2348
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2349 2350 2351 2352
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2353

Y
Yu Yang 已提交
2354
# program is a global instance.
Y
Yu Yang 已提交
2355 2356
_main_program_ = Program()
_startup_program_ = Program()
2357

2358

2359
def default_startup_program():
Y
Yu Yang 已提交
2360
    """
Y
yuyang18 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2370

Y
Yu Yang 已提交
2371 2372 2373
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2374
    return _startup_program_
2375

2376

2377
def default_main_program():
Y
Yu Yang 已提交
2378
    """
Y
yuyang18 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2388

Y
Yu Yang 已提交
2389 2390 2391
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2392
    return _main_program_
Y
Yu Yang 已提交
2393 2394 2395 2396 2397


def switch_main_program(program):
    """
    Switch the main program to a new program.
2398

Y
Yu Yang 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2413
    Switch the startup program to a new program
Y
Yu Yang 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2429 2430 2431
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2432

Y
Yu Yang 已提交
2433
    Examples:
Y
yuyang18 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2444

Y
Yu Yang 已提交
2445
    Examples:
Y
yuyang18 已提交
2446 2447 2448 2449 2450 2451

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2452

Y
Yu Yang 已提交
2453
    Args:
Y
yuyang18 已提交
2454
        main_program(Program): New main program inside `with` statement.
2455
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2469 2470


W
Wu Yi 已提交
2471
def _get_var(name, program=None):
X
xuwei06 已提交
2472
    """
Y
yuyang18 已提交
2473
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2474

X
xuwei06 已提交
2475 2476 2477
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2478
        If None, default_global_program() will be used.
X
xuwei06 已提交
2479 2480 2481 2482 2483 2484 2485

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2486
    assert isinstance(program, Program)
X
xuwei06 已提交
2487 2488

    return program.global_block().var(name)
2489 2490 2491 2492 2493 2494 2495 2496 2497


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace