optimizer.py 272.7 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import os
20
import logging
21
from collections import defaultdict
22

23
import paddle
Q
Qiao Longfei 已提交
24
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
25
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
26

27 28
from . import framework
from . import layers
29
from . import unique_name
30
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
31
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops, ClipGradByGlobalNorm
32 33 34
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
35
from .layers import ops
36
from .dygraph import base as imperative_base
37
from .dygraph import no_grad
38
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
39 40 41
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
42
from functools import cmp_to_key
43
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
44
from .. import compat as cpt
45
import warnings
46

47
__all__ = [
48 49 50 51
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
52
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
53 54
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
55
]
Q
Qiao Longfei 已提交
56 57 58 59 60 61


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
62 63
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
64 65
    """

66
    @imperative_base.no_grad
67 68 69 70
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
71
                 grad_clip=None,
72 73
                 flatten_param_grads=False,
                 align_size=-1,
74
                 name=None):
75 76 77 78 79 80
        """
        Args:
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads. 
                If true, the parameters and gradients will be coalesce to contiguous mempry, 
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
81
        # Because of the loop import, so place it in the function body
82
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
83 84
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
85
        self._name = name
L
lujun 已提交
86
        if framework.in_dygraph_mode():
87
            if not isinstance(learning_rate,
88
                              (float, LearningRateDecay, LRScheduler)):
M
minqiyang 已提交
89
                raise TypeError(
90
                    "learning rate should be float or LRScheduler, got %s here"
M
minqiyang 已提交
91
                    % type(learning_rate))
92
            if self._parameter_list is None:
93 94 95
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
96 97 98 99 100 101 102 103
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
104
        else:
105
            if not isinstance(learning_rate,
106
                              (float, framework.Variable, LRScheduler)):
M
minqiyang 已提交
107
                raise TypeError(
108
                    "learning rate should be float or LRScheduler, got %s here"
109
                    % type(learning_rate))
M
minqiyang 已提交
110

111 112 113 114 115
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
116
        self.regularization = regularization
117
        self._grad_clip = grad_clip
118
        self._learning_rate = learning_rate
119 120
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
121

D
dzhwinter 已提交
122
        self._dtype = None
L
Leo Chen 已提交
123 124 125 126
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

127
        # each program should have a independent learning rate
128
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
129
        self._learning_rate_map = dict()
130
        if isinstance(self._learning_rate, framework.Variable):
131 132
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
133 134 135 136 137
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
138 139
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
140
        self.helper = LayerHelper(self.__class__.__name__)
141
        self._opti_name_list = []
H
hong 已提交
142
        self._accumulators_holder = {}
143
        self._param_device_map = dict()
H
hong 已提交
144 145 146 147

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
148 149
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
150 151 152

        Args: None
        Return:
T
tianshuo78520a 已提交
153
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
154 155 156 157 158
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
159 160 161 162 163 164

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
165 166

        '''
167
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
168 169 170 171
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
172 173
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
174
        # global step if use lr decay
175
        if isinstance(self._learning_rate, LRScheduler):
176 177
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
178
        if isinstance(self._learning_rate, LearningRateDecay):
179 180 181 182
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
183 184 185
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

186 187
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
188

189
                state_dict['global_step'] = var_temp
H
hong 已提交
190 191 192
        return state_dict

    @framework.dygraph_only
193
    def set_state_dict(self, state_dict):
H
hong 已提交
194
        '''
T
tianshuo78520a 已提交
195
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
196 197 198 199 200 201 202 203

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
204

205 206
                import paddle
                import paddle.fluid as fluid
207 208 209

                paddle.disable_static()

210
                emb = paddle.nn.Embedding(10, 10)
211

212
                state_dict = emb.state_dict()
213
                fluid.save_dygraph(state_dict, "paddle_dy")
214

215
                scheduler = paddle.optimizer.lr.NoamDecay(	
216 217 218 219
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
220
                state_dict = adam.state_dict()
221
                fluid.save_dygraph(state_dict, "paddle_dy")
222

223
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
224
        '''
225 226
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
227
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
228 229

        if isinstance(self._learning_rate, LearningRateDecay):
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
                raise RuntimeError("State dict type {} not supprt".format(
                    str(type(load_para))))

            assert model_np.shape == load_para_np.shape,  \
                                        "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
270
                                                param.name, model_np.shape, load_para_np.shape)
271 272 273

            assert model_np.dtype == load_para_np.dtype, \
                                        "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
274
                                            param.name, model_np.dtype, load_para_np.dtype)
275 276 277

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
278 279 280 281 282
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
283
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
284

285 286 287 288
        for k, v in self._global_accumulators.items():
            assert v.name in state_dict, \
                        "optimizer variable {} not found".format( v.name )
            _load_state_para(state_dict, v)
289

290 291 292
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

293 294
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
295

Q
Qiao Longfei 已提交
296
    def _create_global_learning_rate(self):
297 298
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

321 322 323
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
324 325 326 327 328 329 330 331 332 333 334 335
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
336
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
337
            elif isinstance(self._learning_rate, LearningRateDecay):
338 339 340
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
341
                raise TypeError(
342 343
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
344
        else:
345 346 347 348
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
349 350 351 352 353 354
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
355

356 357 358 359 360 361 362 363
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

442 443 444
    @framework.dygraph_only
    def current_step_lr(self):
        """
445
        :api_attr: imperative
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
491
        if isinstance(current_lr, framework.Variable):
492 493 494 495
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
496 497 498
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
499 500 501 502 503 504 505
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
506
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
507 508 509 510
        """
        get global decayed learning rate
        :return:
        """
511 512
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
513
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
514

Q
Qiao Longfei 已提交
515 516 517 518 519
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

520 521 522 523
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
524 525
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
526
        else:
W
Wu Yi 已提交
527
            if param_lr == 1.0:
Y
yuyang18 已提交
528
                return self._global_learning_rate()
W
Wu Yi 已提交
529
            else:
X
Xin Pan 已提交
530 531 532
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
533
                    return self._global_learning_rate() * param_lr
534 535 536 537 538 539 540

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
541
        """
542 543
        pass

544
    def _finish_update(self, block, parameters_and_grads):
545 546 547 548 549 550 551 552
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
553
            None
554 555 556
        """
        pass

557 558 559 560 561
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
562
                         shape=None,
563
                         type=None,
564
                         device=None):
565 566 567 568 569 570 571 572 573
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
574 575
        if self._name is not None:
            name = self._name + "_" + name
576 577
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
578
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
579
                return self._accumulators[name][param.name]
580
            raise Exception("Accumulator {} already exists for parameter {}".
581
                            format(name, param.name))
582 583
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
584
        assert isinstance(self.helper, LayerHelper)
585 586 587 588 589

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
590
        var = self.helper.create_global_variable(
591
            name=var_name,
Q
Qiao Longfei 已提交
592
            persistable=True,
F
fengjiayi 已提交
593
            dtype=dtype or param.dtype,
594
            type=param.type if type is None else type,
H
hong 已提交
595 596
            shape=shape,
            belong_to_optimizer=True)
597 598 599 600 601
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
602 603 604 605 606 607 608

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
609
        self._accumulators[name][param.name] = var
610
        return var
611

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    def _add_global_accumulator(self,
                                name,
                                dtype=None,
                                fill_value=0.0,
                                shape=None,
                                type=None,
                                device=None):
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name in self._global_accumulators):
            if framework.in_dygraph_mode():
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
        if shape == None:
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
            belong_to_optimizer=True)
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

666 667 668 669 670 671 672 673
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
674
            accumulator variable
675
        """
W
whs 已提交
676 677
        if self._name is not None:
            name = self._name + "_" + name
678 679 680 681 682 683
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name not in self._global_accumulators):
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

699 700 701 702 703 704 705 706 707 708 709 710
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
711
                        break
712 713 714 715 716 717 718

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

719
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
720 721 722
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
723
          parameters_and_grads(list(tuple(Variable, Variable))):
724
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
725 726

        Returns:
727
          return_op_list: a list of operators that will complete one step of
728 729 730
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
731
        """
732 733 734 735 736
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
737
        # for parameters and extend _finish_update method to add custom ops.
738

739
        # Allways called under program_guard use global block as loss block
740 741 742
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

743
        global_block = framework.default_main_program().global_block()
744 745 746 747 748 749 750 751 752
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
753

754
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
755
        self._create_accumulators(
756
            target_block,
C
chengduo 已提交
757
            [p[0] for p in parameters_and_grads if p[0].trainable])
758 759
        self._create_global_learning_rate()

M
minqiyang 已提交
760
        if framework.in_dygraph_mode():
761 762 763
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
764 765
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
766 767 768 769 770 771 772
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
773 774 775 776 777
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
778 779 780

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
781
        self._finish_update(target_block, parameters_and_grads)
782

783 784
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
785 786

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
787 788 789 790 791 792 793 794 795
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
796 797
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
813 814 815 816 817 818 819 820 821 822 823 824 825
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
826 827
        return new_param_grads, (table_param, table_grad), sgd_op

828 829 830 831 832 833 834
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
835
        The first part of ``minimize``, do auto-diff to append backward operations for
836 837 838
        the current program.

        Args:
839 840 841 842
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
843
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
844 845
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
846
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
847 848 849
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
850

851
        Return:
852 853
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
854

855
        Examples:
856
            See examples in ``apply_gradients``.
857
        """
858
        act_no_grad_set = None
L
Leo Chen 已提交
859
        if framework.in_dygraph_mode():
860
            pass
L
Leo Chen 已提交
861 862
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
863

L
Leo Chen 已提交
864 865 866 867
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

L
lujun 已提交
868
        if framework.in_dygraph_mode():
869 870 871
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list

C
chengduo 已提交
872
            params_grads = []
873
            for param in parameter_list:
C
chengduo 已提交
874 875
                if not param.trainable:
                    continue
876
                if param._grad_ivar() is not None:
C
chengduo 已提交
877
                    # create gradient variable
878
                    grad_var = param._grad_ivar()
C
chengduo 已提交
879
                    params_grads.append((param, grad_var))
880
        else:
C
chengduo 已提交
881 882 883 884 885
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
886 887 888 889
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
890 891
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
892 893
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
894
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
895
        return params_grads
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
    def _create_regularization_of_grad(self, param, grad, regularization=None):
        """ Create and add backward regularization Operators
    
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
        if grad is None or ((not hasattr(param, 'regularizer') or
                             (hasattr(param, 'regularizer') and
                              param.regularizer is None)) and
                            regularization is None):
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
                type=core.VarDesc.VarType.LOD_TENSOR)

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
        if framework.in_dygraph_mode():
            new_grad = core.ops.sum([grad, regularization_term])
        else:
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)

        return new_grad

    def append_regularization_ops(self,
                                  parameters_and_grads,
                                  regularization=None):
        r"""Create and add backward regularization Operators
    
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
    
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
    
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
    
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
        if framework.in_dygraph_mode():
            for param, grad in parameters_and_grads:
                new_grad = self._create_regularization_of_grad(param, grad,
                                                               regularization)
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
972 973 974
                    if not repeate_regularizer and getattr(
                            param, 'regularizer',
                            None) is not None and regularization is not None:
975 976 977 978 979 980 981 982 983 984 985
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
                            param, grad, regularization)
                        params_and_grads.append((param, new_grad))
        return params_and_grads

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
            if getattr(p, 'need_clip', True) is False or getattr(
                    p, 'regularizer', None) is not None:
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
                    "the regularizer is set".format(p.name))
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        with program_guard(default_main_program()):
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype
                })

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype
                })

        #NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
        # so the shape of flatten_param and flatten_grad will be inferred.
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0))
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0))

        return [(flatten_param, flatten_grad)]

1063 1064 1065 1066 1067 1068 1069
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1070

1071 1072
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1073

1074 1075 1076
        Examples:
            .. code-block:: python

1077
                import paddle.fluid as fluid
1078 1079 1080 1081 1082 1083 1084 1085 1086
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1087 1088 1089 1090 1091 1092
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
            if self._grad_clip == None or isinstance(self._grad_clip,
                                                     ClipGradByGlobalNorm):
                params_grads = self.flatten_param_grads(params_grads)

1093
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1094 1095 1096 1097
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1098 1099

        # Add regularization if any
1100 1101
        params_grads = self.append_regularization_ops(params_grads,
                                                      self.regularization)
1102 1103 1104 1105

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
1118
        if framework.in_dygraph_mode():
C
chengduo 已提交
1119 1120
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
1121 1122
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1123 1124
                params_grads = self.append_regularization_ops(
                    params_grads, self.regularization)
C
chengduo 已提交
1125 1126 1127 1128 1129 1130 1131
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1132
    def _get_no_grad_set(self, loss, no_grad_set=None):
1133
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1134 1135 1136 1137 1138 1139 1140 1141
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1142 1143 1144 1145
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1146 1147

        If not, new gradient will accumulat on previous gradient.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1175
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
1176 1177
    def minimize(self,
                 loss,
1178
                 startup_program=None,
Q
Qiao Longfei 已提交
1179
                 parameter_list=None,
1180
                 no_grad_set=None):
1181
        """
1182
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1183

1184
        Args:
1185 1186 1187 1188
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1189
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1190 1191
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1192
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1193
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1194

1195
        Returns:
1196 1197 1198
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1199 1200 1201
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
1202 1203 1204

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1205
        """
C
chengduo 已提交
1206
        assert isinstance(loss, Variable), "The loss should be an Variable."
1207

1208 1209
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
1210

C
chengduo 已提交
1211 1212 1213 1214 1215
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
1216

C
chengduo 已提交
1217 1218
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
1219

Q
Qiao Longfei 已提交
1220
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1221 1222 1223


class SGDOptimizer(Optimizer):
1224
    r"""
Q
qiaolongfei 已提交
1225 1226 1227 1228 1229 1230
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1231 1232 1233
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1234
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1235 1236
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1237 1238 1239 1240 1241
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1242 1243 1244 1245
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1246 1247
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1248 1249 1250 1251

    Examples:
        .. code-block:: python

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1277 1278
    """

1279 1280 1281 1282
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1283
                 grad_clip=None,
1284
                 name=None):
Q
Qiao Longfei 已提交
1285
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1286
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1287
            learning_rate=learning_rate,
1288
            parameter_list=parameter_list,
X
Xin Pan 已提交
1289
            regularization=regularization,
1290
            grad_clip=grad_clip,
X
Xin Pan 已提交
1291
            name=name)
Q
Qiao Longfei 已提交
1292 1293
        self.type = "sgd"

1294
    @no_grad
1295
    def _append_optimize_op(self, block, param_and_grad):
1296
        lr = self._create_param_lr(param_and_grad)
1297
        if framework.in_dygraph_mode():
1298 1299 1300
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
1301

1302
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1303 1304 1305 1306 1307 1308
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1309
                "LearningRate": lr
Q
Qiao Longfei 已提交
1310
            },
M
minqiyang 已提交
1311 1312
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1313 1314

        return sgd_op
1315 1316 1317


class MomentumOptimizer(Optimizer):
1318
    r"""
Q
qiaolongfei 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1332
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1333 1334 1335

        & else:

Q
qiaolongfei 已提交
1336
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1337

1338 1339 1340 1341
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1342
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1343 1344
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1345
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1346 1347 1348 1349 1350
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1351 1352 1353 1354
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1355 1356
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1357 1358 1359 1360

    Examples:
        .. code-block:: python

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1386 1387 1388
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1389 1390 1391
    def __init__(self,
                 learning_rate,
                 momentum,
1392
                 parameter_list=None,
X
Xin Pan 已提交
1393 1394
                 use_nesterov=False,
                 regularization=None,
1395
                 grad_clip=None,
X
Xin Pan 已提交
1396
                 name=None):
1397 1398
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1399
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1400
            learning_rate=learning_rate,
1401
            parameter_list=parameter_list,
X
Xin Pan 已提交
1402
            regularization=regularization,
1403
            grad_clip=grad_clip,
X
Xin Pan 已提交
1404
            name=name)
1405 1406
        self.type = "momentum"
        self._momentum = momentum
1407
        self._use_nesterov = bool(use_nesterov)
1408 1409 1410 1411 1412

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1413
            self._add_accumulator(self._velocity_acc_str, p)
1414 1415 1416 1417 1418 1419

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1420 1421 1422 1423 1424 1425 1426 1427
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1428

1429
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1430 1431 1432 1433
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1434
            "LearningRate": [lr]
1435 1436 1437 1438 1439 1440
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1441 1442 1443
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1444 1445 1446
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1447
            stop_gradient=True)
1448 1449

        return momentum_op
1450 1451


1452
class DGCMomentumOptimizer(Optimizer):
1453
    r"""
1454
	:api_attr: Static Graph
S
swtkiwi 已提交
1455

1456
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1457

G
gongweibao 已提交
1458
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1459 1460
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1461
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1462 1463 1464

    Eventually, these gradients become large enough to be transmitted.

1465
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1466

G
gongweibao 已提交
1467
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1468 1469 1470 1471

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1472

1473 1474
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1475

1476
        2. Call momentum to optimize the cost.
1477 1478

    Args:
1479 1480
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1481
        momentum (float): Momentum factor.
G
gongweibao 已提交
1482
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1483 1484 1485 1486 1487 1488 1489
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1490
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1491 1492
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1493
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1494 1495 1496 1497 1498
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1499 1500 1501
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1502 1503
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1504 1505 1506 1507

    Examples:
        .. code-block:: python

1508
            import paddle.fluid as fluid
1509
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1510 1511 1512 1513 1514
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1515 1516

    """
1517 1518
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1519 1520 1521 1522 1523 1524 1525

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1526
                 parameter_list=None,
1527 1528 1529
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1530
                 grad_clip=None,
1531
                 name=None):
Z
zhongpu 已提交
1532 1533
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1534 1535 1536 1537

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1538 1539 1540 1541
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1542
            parameter_list=parameter_list,
1543
            regularization=regularization,
1544
            grad_clip=grad_clip,
1545 1546 1547 1548
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1549

1550
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1551
        self._rampup_begin_step = rampup_begin_step
1552 1553
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1554

1555
        self._rampup_begin_step_var = None
1556
        self._global_step_var = None
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
1567
                value)
1568
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1569 1570

            self._num_trainers = num_trainers
1571
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1572

1573 1574
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1575

1576 1577 1578
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1579

1580 1581
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1582
            from .regularizer import L1Decay, L2Decay
1583 1584 1585 1586
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1587 1588
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1589
        return regular_type, regular_coeff
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1617 1618

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1619 1620 1621
            type = "momentum"
        else:
            type = "dgc_momentum"
1622 1623 1624 1625 1626
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1627
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1628 1629 1630

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1631 1632 1633 1634
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1635 1636 1637
            stop_gradient=True)
        return dgc_momentum_op

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1670 1671 1672 1673 1674 1675
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1676
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1677

1678 1679 1680
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1681 1682 1683 1684 1685
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1686
            name=core.dgc.kDGCRampUpBeginStepName(),
1687 1688 1689
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1690 1691
        self.helper = LayerHelper(self.__class__.__name__)

1692
        for param_var, grad_var in param_and_grads:
1693 1694 1695
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1696
            if not self._is_use_dgc(param_var, grad_var):
1697 1698
                continue

1699
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1700 1701 1702 1703 1704

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1705
                name=param_var.name + core.dgc.kDGCKName(),
1706 1707 1708 1709 1710 1711 1712
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1713
                name=param_var.name + core.dgc.kDGCEncodedName(),
1714 1715 1716
                value=0.0,
                force_cpu=False)

1717 1718 1719 1720 1721 1722 1723 1724
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1744 1745
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1746
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1747
                         encoded_var, gather_var)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1763 1764
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1765 1766 1767 1768 1769

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1770
            type="dgc_clip_by_norm",
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1783
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1784 1785

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1786
                encoded_var, gather_var):
1787 1788
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1789

1790 1791 1792 1793 1794 1795 1796
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1797 1798 1799 1800 1801 1802
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1803
                "Param": param_var,
1804 1805
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1806 1807 1808 1809 1810 1811
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1812 1813
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1814 1815 1816 1817 1818 1819
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1820
                "rampup_step": float(self._rampup_step),
1821 1822
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1823 1824 1825 1826 1827 1828 1829 1830
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1831
    @imperative_base.no_grad
1832
    def apply_gradients(self, params_grads):
1833 1834 1835 1836 1837
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

1838 1839 1840 1841 1842 1843
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1844
        # DGC clip and regularization in optimizer.backward
1845 1846 1847 1848 1849 1850
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1851
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1852 1853 1854 1855 1856
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1857

1858 1859
        not_dgc_params_grads = self.append_regularization_ops(
            not_dgc_params_grads, self.regularization)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1871

1872
class LarsMomentumOptimizer(Optimizer):
1873
    r"""
1874 1875 1876 1877 1878 1879 1880 1881 1882
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1883
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1884 1885 1886

        & param = param - velocity

1887 1888 1889 1890 1891 1892
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1893
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1894 1895
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1896 1897 1898 1899 1900
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1901 1902 1903 1904
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1905 1906
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1907 1908
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1909 1910 1911
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1912
        
1913 1914 1915
    Examples:
        .. code-block:: python

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1932 1933 1934 1935 1936 1937 1938 1939
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1940
                 parameter_list=None,
1941
                 regularization=None,
1942
                 grad_clip=None,
1943 1944
                 name=None,
                 exclude_from_weight_decay=None,
1945 1946 1947
                 epsilon=0,
                 multi_precision=False,
                 rescale_grad=1.0):
1948 1949 1950 1951
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1952
            parameter_list=parameter_list,
1953
            regularization=regularization,
1954
            grad_clip=grad_clip,
1955 1956 1957 1958 1959
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1960 1961 1962 1963 1964
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + '_fp32_master'
        var_name = unique_name.generate(var_name)
        var = layers.create_global_var(
            name=var_name,
            shape=param.shape,
            value=0,
            dtype='float32',
            persistable=True)
        block = self.helper.startup_program.global_block()
        block.append_op(
            type="cast",
            inputs={"X": [param]},
            outputs={"Out": [var]},
            attrs={
                "in_dtype": param.dtype,
                "out_dtype": core.VarDesc.VarType.FP32
            })
        self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]
2011 2012 2013 2014 2015

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2016 2017 2018 2019 2020 2021 2022 2023 2024
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2025 2026 2027 2028
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2029 2030 2031 2032 2033 2034 2035 2036
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

2037 2038
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
        lr = self._create_param_lr(param_and_grad)

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

        attrs = {
            "mu": self._momentum,
            "lars_coeff": self._lars_coeff,
            "lars_weight_decay": _lars_weight_decay,
            "multi_precision": find_master,
            "rescale_grad": self._rescale_grad
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

2067 2068 2069
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
2070 2071 2072
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2073
            stop_gradient=True)
2074 2075 2076 2077

        return momentum_op


2078
class AdagradOptimizer(Optimizer):
2079
    r"""
2080 2081
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2082

2083
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2084 2085 2086 2087 2088 2089 2090

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2091 2092 2093 2094 2095 2096
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2097 2098 2099
    for numerical stability to avoid the division by zero error.

    Args:
2100 2101 2102 2103
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2104
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2105 2106
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2107 2108 2109 2110 2111
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2112 2113 2114 2115
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2116 2117 2118 2119 2120
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2121 2122 2123 2124

    Examples:
        .. code-block:: python

2125
            import numpy as np
2126
            import paddle.fluid as fluid
2127 2128

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2129
            inp = fluid.data(name="inp", shape=[2, 2])
2130 2131
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
2132
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2133 2134 2135 2136 2137 2138 2139
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2140 2141 2142
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2143 2144 2145
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
2146
                 parameter_list=None,
X
Xin Pan 已提交
2147
                 regularization=None,
2148
                 grad_clip=None,
2149
                 name=None,
X
xuezhong 已提交
2150
                 initial_accumulator_value=0.0):
2151 2152
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2153
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2154
            learning_rate=learning_rate,
2155
            parameter_list=parameter_list,
X
Xin Pan 已提交
2156
            regularization=regularization,
2157
            grad_clip=grad_clip,
X
Xin Pan 已提交
2158
            name=name)
2159 2160
        self.type = "adagrad"
        self._epsilon = epsilon
2161
        self.initial_accumulator_value = initial_accumulator_value
2162 2163 2164 2165 2166

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
2167 2168 2169 2170
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
2171 2172 2173 2174 2175 2176

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
2177
        # Create the adagrad optimizer op
2178 2179 2180 2181 2182 2183
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
2184
                "LearningRate": self._create_param_lr(param_and_grad)
2185 2186 2187
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
2188 2189
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
2190 2191

        return adagrad_op
2192 2193 2194


class AdamOptimizer(Optimizer):
2195
    r"""
T
tianshuo78520a 已提交
2196
    The Adam optimizer uses an optimization described at the end
2197 2198 2199 2200 2201
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2216 2217
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2218
    Args:
2219 2220
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2221 2222
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2223
            The default value is 0.9.
2224 2225
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2226
            The default value is 0.999.
2227 2228
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2229
            The default value is 1e-08.
H
hong 已提交
2230
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2231 2232
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2233 2234 2235 2236 2237
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2238 2239 2240 2241
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2252 2253
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow 
            for whole model instead of creating beta_pow for each parameter. Default is false.
2254 2255 2256
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
            use same align_size as allocator. 
Q
qiaolongfei 已提交
2257 2258 2259 2260

    Examples:
        .. code-block:: python

2261 2262 2263 2264 2265 2266
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2267 2268
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2302
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2319 2320 2321 2322 2323 2324 2325
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2326 2327 2328 2329 2330 2331 2332

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2333
                    return beta1, beta2, epsilon
2334

2335
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2336 2337
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2338
                                                    beta1=beta1,
2339 2340
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2351 2352 2353
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2354 2355
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2356 2357 2358 2359 2360

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2361
                 epsilon=1e-8,
2362
                 parameter_list=None,
X
Xin Pan 已提交
2363
                 regularization=None,
2364
                 grad_clip=None,
Q
Qiao Longfei 已提交
2365
                 name=None,
2366
                 lazy_mode=False,
2367 2368 2369
                 use_global_beta_pow=False,
                 flatten_param_grads=False,
                 align_size=-1):
2370 2371 2372 2373
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2374
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
2375
            learning_rate=learning_rate,
2376
            parameter_list=parameter_list,
X
Xin Pan 已提交
2377
            regularization=regularization,
2378
            grad_clip=grad_clip,
2379 2380
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
X
Xin Pan 已提交
2381
            name=name)
2382 2383 2384 2385
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2386
        self._lazy_mode = lazy_mode
2387
        self._use_global_beta_pow = use_global_beta_pow
2388 2389 2390 2391 2392 2393

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2394 2395
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
                    fill_value=0.9 if isinstance(self._beta1, Variable) \
                            else self._beta1,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
                    fill_value=0.999 if isinstance(self._beta2, Variable) \
                            else self._beta2,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2413
                name=self._beta1_pow_acc_str,
2414 2415
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2416
                shape=[1],
2417
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2418
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2419
                name=self._beta2_pow_acc_str,
2420 2421
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2422
                shape=[1],
2423
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2424 2425 2426 2427 2428 2429 2430 2431

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)
        else:
            beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                  param_and_grad[0])
            beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                  param_and_grad[0])
2442
        lr = self._create_param_lr(param_and_grad)
2443
        # create the adam optimize op
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
2455 2456
                1000, 'beta1', _beta1, 'beta2', _beta2, 'use_global_beta_pow',
                self._use_global_beta_pow)
2457 2458 2459

            return None

2460
        inputs = {
2461 2462
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2463
            "LearningRate": [lr],
2464 2465 2466 2467
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2468 2469
        }
        outputs = {
2470 2471 2472 2473 2474
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2475 2476 2477
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2478 2479
            "min_row_size_to_use_multithread": 1000,
            'use_global_beta_pow': self._use_global_beta_pow
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2490 2491 2492 2493
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2494

2495 2496
        adam_op = block.append_op(
            type=self.type,
2497 2498 2499
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2500
            stop_gradient=True)
2501 2502 2503

        return adam_op

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
    def _finish_update(self, block, parameters_and_grads):
        r"""Update beta1_pow and beta2_pow accumulator
        """
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
                attrs = {}
                if isinstance(self._beta1, Variable):
                    inputs['ScaleTensor'] = self._beta1
                else:
                    attrs['scale'] = self._beta1
                block.append_op(
                    type="scale",
                    inputs=inputs,
                    outputs={"Out": beta1_pow_acc},
                    attrs=attrs,
                    stop_gradient=True)

                inputs = {"X": beta2_pow_acc}
                attrs = {}
                if isinstance(self._beta2, Variable):
                    inputs['ScaleTensor'] = self._beta2
                else:
                    attrs['scale'] = self._beta2
                block.append_op(
                    type="scale",
                    inputs=inputs,
                    outputs={"Out": beta2_pow_acc},
                    attrs=attrs,
                    stop_gradient=True)

2541 2542

class AdamaxOptimizer(Optimizer):
2543
    r"""
2544 2545 2546 2547
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2548

2549
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2563
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2564

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2577
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2578 2579
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2580 2581 2582 2583 2584
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2585 2586 2587 2588
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2589 2590 2591 2592 2593 2594
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2595

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2609
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2610 2611
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2612
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2613 2614 2615 2616 2617 2618 2619 2620 2621
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2622 2623 2624
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2625
    _beta1_pow_acc_str = "beta1_pow_acc"
2626 2627 2628 2629 2630

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2631
                 epsilon=1e-8,
2632
                 parameter_list=None,
X
Xin Pan 已提交
2633
                 regularization=None,
2634
                 grad_clip=None,
X
Xin Pan 已提交
2635
                 name=None):
2636 2637 2638 2639
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2640
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2641
            learning_rate=learning_rate,
2642
            parameter_list=parameter_list,
X
Xin Pan 已提交
2643
            regularization=regularization,
2644
            grad_clip=grad_clip,
X
Xin Pan 已提交
2645
            name=name)
2646 2647 2648 2649 2650 2651 2652 2653
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2654 2655
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2656 2657 2658 2659 2660
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2661 2662 2663 2664 2665 2666 2667

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2668 2669
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2670 2671 2672 2673 2674 2675
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2676
                "LearningRate": self._create_param_lr(param_and_grad),
2677 2678
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2679
                "Beta1Pow": beta1_pow_acc
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2690 2691
            },
            stop_gradient=True)
2692 2693 2694

        return adamax_op

2695
    def _finish_update(self, block, parameters_and_grads):
2696 2697 2698
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2699
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2700
            if grad is None or param.trainable is False:
2701
                continue
X
Xin Pan 已提交
2702 2703
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2704 2705
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2706
                block.append_op(
2707 2708 2709
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2710 2711
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2712 2713


2714
class DpsgdOptimizer(Optimizer):
2715
    r"""
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2752
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2753 2754
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2755 2756 2757 2758 2759 2760 2761 2762
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2763 2764
                 sigma=1e-8,
                 parameter_list=None):
2765 2766 2767 2768
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2769 2770
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2771 2772 2773 2774
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2775 2776 2777 2778 2779 2780 2781
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2782 2783 2784 2785 2786

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2787 2788 2789
        if self._seed == None:
            self._seed = 0

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2801 2802
                "sigma": self._sigma,
                "seed": self._seed
2803 2804 2805 2806 2807 2808
            },
            stop_gradient=True)

        return dpsgd_op


2809
class DecayedAdagradOptimizer(Optimizer):
2810
    r"""
2811 2812 2813
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2814

2815
    The parameter ``param_out`` update rule with gradient ``grad``:
2816 2817 2818 2819 2820 2821 2822

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2823 2824 2825 2826
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2827 2828 2829
    stability to avoid the division by zero error.

    Args:
2830 2831 2832 2833 2834
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2835
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2836 2837
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2838 2839 2840 2841 2842
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2843 2844 2845 2846
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2847 2848 2849 2850 2851 2852
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2853 2854 2855 2856

    Examples:
        .. code-block:: python

2857 2858
            import paddle.fluid as fluid

2859 2860 2861 2862
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2863
            optimizer.minimize(cost)
2864 2865 2866
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2867 2868 2869 2870
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2871
                 parameter_list=None,
X
Xin Pan 已提交
2872
                 regularization=None,
2873
                 grad_clip=None,
X
Xin Pan 已提交
2874
                 name=None):
2875 2876 2877 2878
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2879
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2880
            learning_rate=learning_rate,
2881
            parameter_list=parameter_list,
X
Xin Pan 已提交
2882
            regularization=regularization,
2883
            grad_clip=grad_clip,
X
Xin Pan 已提交
2884
            name=name)
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2912 2913
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2914
            stop_gradient=True)
2915 2916

        return decayed_adagrad_op
2917 2918


2919
class AdadeltaOptimizer(Optimizer):
2920
    r"""
Z
Zeng Jinle 已提交
2921
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2922

Z
Zeng Jinle 已提交
2923
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2924 2925 2926
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2927

Z
Zeng Jinle 已提交
2928 2929
    .. math::

Z
Zeng Jinle 已提交
2930
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2931

Z
Zeng Jinle 已提交
2932
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2933

Z
Zeng Jinle 已提交
2934
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2935 2936

    Args:
Z
Zeng Jinle 已提交
2937 2938 2939
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2940
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2941 2942
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2943 2944 2945 2946 2947
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2948 2949 2950 2951
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2952 2953 2954
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2955 2956 2957 2958

    Examples:
        .. code-block:: python

2959
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2960

2961
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2962 2963
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2964 2965
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2966

Z
Zeng Jinle 已提交
2967 2968 2969 2970
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2971
    """
2972

2973 2974 2975
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2976 2977 2978 2979
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2980
                 parameter_list=None,
X
Xin Pan 已提交
2981
                 regularization=None,
2982
                 grad_clip=None,
X
Xin Pan 已提交
2983
                 name=None):
2984 2985 2986 2987 2988 2989
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2990
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2991
            learning_rate=learning_rate,
2992
            parameter_list=parameter_list,
X
Xin Pan 已提交
2993
            regularization=regularization,
2994
            grad_clip=grad_clip,
X
Xin Pan 已提交
2995
            name=name)
2996 2997 2998 2999 3000
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3001 3002
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3003 3004 3005 3006 3007 3008

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3009 3010
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
3032 3033
                   "rho": self._rho},
            stop_gradient=True)
3034 3035 3036 3037

        return adadelta_op


Q
qingqing01 已提交
3038
class RMSPropOptimizer(Optimizer):
3039
    r"""
Q
qingqing01 已提交
3040 3041 3042 3043 3044 3045 3046 3047
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3048
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3049 3050 3051 3052

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3053
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3054 3055 3056 3057 3058 3059

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3060
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3061

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3076 3077 3078 3079
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3080
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3081 3082 3083 3084 3085
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3086 3087 3088
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3089
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3090
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3091
        momentum(float): :math:`\\beta` in equation is the momentum term,
3092
            default is 0.0.
3093 3094 3095 3096
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3097
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3098 3099
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3100 3101 3102 3103 3104
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3105 3106 3107 3108
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3109 3110
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3111 3112 3113 3114 3115 3116 3117

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3143 3144 3145 3146
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3147
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3148 3149 3150 3151 3152 3153

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
3154
                 centered=False,
3155
                 parameter_list=None,
X
Xin Pan 已提交
3156
                 regularization=None,
3157
                 grad_clip=None,
X
Xin Pan 已提交
3158
                 name=None):
Q
qingqing01 已提交
3159
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
3160
            learning_rate=learning_rate,
3161
            parameter_list=parameter_list,
X
Xin Pan 已提交
3162
            regularization=regularization,
3163
            grad_clip=grad_clip,
X
Xin Pan 已提交
3164
            name=name)
Q
qingqing01 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3178
        self._centered = centered
Q
qingqing01 已提交
3179 3180 3181 3182 3183 3184 3185 3186

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3187
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
3197 3198
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
3199 3200 3201 3202 3203 3204 3205
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
3206
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
3207 3208 3209 3210 3211
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
3212 3213
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
3214 3215 3216 3217
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
3218 3219
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
3220 3221
            },
            stop_gradient=True)
Q
qingqing01 已提交
3222 3223 3224 3225

        return rmsprop_op


Q
qiaolongfei 已提交
3226
class FtrlOptimizer(Optimizer):
3227
    r"""
Q
qiaolongfei 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3266 3267 3268 3269 3270
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3271
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3272 3273
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3274 3275 3276 3277 3278
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3279 3280 3281 3282
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3283 3284
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3285 3286 3287 3288 3289 3290 3291

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3316

3317
    NOTE:
C
chengduo 已提交
3318
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3319 3320 3321 3322 3323
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
3324 3325 3326 3327 3328
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
3329
                 parameter_list=None,
X
Xin Pan 已提交
3330
                 regularization=None,
3331
                 grad_clip=None,
X
Xin Pan 已提交
3332
                 name=None):
Q
qiaolongfei 已提交
3333
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
3334
            learning_rate=learning_rate,
3335
            parameter_list=parameter_list,
X
Xin Pan 已提交
3336
            regularization=regularization,
3337
            grad_clip=grad_clip,
X
Xin Pan 已提交
3338
            name=name)
Q
qiaolongfei 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
3378
                   "l2": self._l2,
M
minqiyang 已提交
3379 3380
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
3381 3382 3383 3384

        return ftrl_op


Y
Yibing Liu 已提交
3385
class LambOptimizer(AdamOptimizer):
3386
    r"""
Y
Yibing Liu 已提交
3387 3388 3389 3390
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
3391 3392
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3393 3394 3395 3396 3397

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
3398
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
3399

Y
Yibing Liu 已提交
3400
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3401

3402 3403 3404 3405
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3406
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3407

Y
Yibing Liu 已提交
3408
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3409 3410 3411 3412 3413 3414


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3415 3416 3417 3418 3419 3420 3421 3422
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3423
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3424 3425
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3426 3427 3428 3429 3430
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3431 3432
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
3433 3434 3435
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
3436 3437 3438 3439 3440
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3441 3442 3443 3444 3445 3446

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3447
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3448 3449 3450
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3451 3452 3453 3454 3455
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3469
                 parameter_list=None,
Y
Yibing Liu 已提交
3470
                 regularization=None,
3471
                 grad_clip=None,
Y
Yibing Liu 已提交
3472
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3473 3474 3475 3476 3477 3478 3479 3480
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3481
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3482
            regularization=regularization,
3483
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3484 3485 3486 3487 3488 3489
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3490
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3491 3492 3493

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3494
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3505 3506 3507 3508 3509
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _, _, _, _ = core.ops.lamb(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'beta1', self._beta1,
                'beta2', self._beta2, 'epsilon', self._epsilon, 'weight_decay',
                weight_decay)
            return None
Y
Yibing Liu 已提交
3520

Y
Yibing Liu 已提交
3521 3522 3523 3524 3525 3526
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
3527
                "LearningRate": lr,
Y
Yibing Liu 已提交
3528 3529 3530 3531 3532 3533 3534 3535
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
3536 3537 3538
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc
Y
Yibing Liu 已提交
3539 3540 3541 3542 3543
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3544
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3545 3546 3547 3548 3549 3550
            },
            stop_gradient=True)

        return lamb_op


3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3564
Dpsgd = DpsgdOptimizer
3565
DecayedAdagrad = DecayedAdagradOptimizer
3566
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3567
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3568
Ftrl = FtrlOptimizer
3569
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3570
Lamb = LambOptimizer
3571 3572 3573


class ModelAverage(Optimizer):
3574
    r"""
3575
	:api_attr: Static Graph
S
swtkiwi 已提交
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3605 3606

    Args:
3607 3608 3609
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3610 3611 3612 3613 3614
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3615 3616 3617
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3618

3619
    Examples:
Q
qiaolongfei 已提交
3620 3621 3622

      .. code-block:: python

3623 3624 3625 3626 3627 3628
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3629

3630 3631 3632 3633
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3634
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3635 3636 3637 3638 3639 3640 3641 3642
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3643
                                                         max_average_window=12500)
3644 3645

            exe.run(startup_program)
3646 3647 3648 3649 3650
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3651 3652

            # apply ModelAverage
3653
            with model_average.apply(exe):
3654 3655 3656 3657
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3658 3659 3660
    """

    def __init__(self,
W
wanghaoshuang 已提交
3661
                 average_window_rate,
3662 3663
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3664 3665
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3666 3667
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3668 3669
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3670 3671 3672
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3673

3674
        self.params_grads = []
3675 3676
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3677
            if param.do_model_average != False:
3678
                grad = param.block.create_var(
3679 3680
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3681 3682
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3683
                    stop_gradient=True)
3684
                self.params_grads.append((param, grad))
3685

3686
        for param, grad in self.params_grads:
3687 3688
            if grad is None:
                continue
X
Xin Pan 已提交
3689 3690
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3691
                self._append_average_accumulate_op(param)
3692

3693 3694 3695 3696
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3697
                self._add_average_apply_op(block, param_grad)
3698 3699 3700 3701 3702

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3703
                self._add_average_restore_op(block, param_grad)
3704

3705
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3706 3707 3708 3709 3710 3711
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3712
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3713
        old_num_accumulates = block._clone_variable(
3714
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3715
        num_updates = block._clone_variable(
3716 3717 3718 3719 3720 3721
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3722 3723 3724 3725
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3726
        ops._elementwise_div(x=sum, y=tmp, out=param)
3727 3728

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3729 3730
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3768 3769
            },
            stop_gradient=True)
3770

S
rename  
sneaxiy 已提交
3771
    @signature_safe_contextmanager
3772
    def apply(self, executor, need_restore=True):
3773 3774
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3775 3776

        Args:
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3821
        """
3822 3823 3824 3825 3826 3827
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3828 3829

    def restore(self, executor):
3830 3831
        """
        Restore ``Parameter`` values of current model.
3832 3833
        
        Args:
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3878
        """
3879
        executor.run(self.restore_program)
3880 3881 3882


class ExponentialMovingAverage(object):
3883
    r"""
3884
	:api_attr: Static Graph
S
swtkiwi 已提交
3885

3886 3887 3888 3889 3890 3891
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3892
        \\text{EMA}_0 & = 0
3893

3894 3895
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3896 3897 3898 3899
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3921 3922 3923


    Args:
Y
Yibing Liu 已提交
3924 3925 3926 3927 3928 3929 3930
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3931 3932 3933 3934 3935


    Examples:

	.. code-block:: python
3936 3937 3938 3939 3940

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3941
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3942 3943 3944 3945 3946 3947 3948 3949
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3950
	    global_steps = fluid.layers.autoincreased_step_counter()
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3980 3981
    """

3982
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3983 3984 3985
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3986
        self._decay = decay
3987
        self._thres_steps = thres_steps
3988
        self._name = name if name is not None else ''
3989 3990
        self._decay_var = self._get_ema_decay()

3991
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3992
        self._params_tmps = []
3993
        for param in default_main_program().global_block().all_parameters():
3994 3995 3996 3997 3998 3999 4000
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
4001
                self._params_tmps.append((param, tmp))
4002

Y
Yibing Liu 已提交
4003 4004
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4005 4006
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
4007
                self._ema_vars[param.name] = self._create_ema_vars(param)
4008 4009 4010 4011

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4012
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4013
            for param, tmp in self._params_tmps:
4014 4015
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4016
                ema = block._clone_variable(self._ema_vars[param.name])
4017
                layers.assign(input=param, output=tmp)
4018
                # bias correction
4019 4020
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4021 4022 4023 4024
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow))
                    with switch.default():
                        layers.assign(output=param, input=ema)
4025 4026 4027 4028

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4029
            for param, tmp in self._params_tmps:
4030 4031 4032 4033
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
4056 4057 4058 4059 4060 4061 4062
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
4063
        decay_var = block._clone_variable(self._decay_var)
4064 4065
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
4066

Y
Yibing Liu 已提交
4067
    def _create_ema_vars(self, param):
4068 4069 4070 4071 4072 4073 4074 4075 4076
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
4077 4078 4079 4080 4081
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
4082 4083
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
4084
        param_master_emas = []
Y
Yibing Liu 已提交
4085 4086 4087 4088
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
4089
                if param.name + '.master' in self._ema_vars:
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
4107

4108 4109 4110 4111 4112 4113 4114
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
4115 4116
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4132 4133 4134


class PipelineOptimizer(object):
4135
    """
4136
	:api_attr: Static Graph
S
swtkiwi 已提交
4137

4138 4139 4140 4141
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4142

4143
    Args:
4144 4145 4146 4147
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
4148 4149
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4150

4151
            import paddle.fluid as fluid
H
hutuxian 已提交
4152 4153
            import paddle.fluid.layers as layers

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4170
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4171
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4172
            optimizer.minimize(loss)
4173 4174 4175 4176 4177 4178 4179 4180 4181

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4182 4183
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4184 4185
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4186
            exe.train_from_dataset(
4187
                    fluid.default_main_program())
4188
            data_loader.reset()
4189 4190
    """

4191
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
4192 4193
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
M
MRXLT 已提交
4194
        if not isinstance(optimizer, Optimizer) and not isinstance(
A
Aurelius84 已提交
4195 4196 4197
                optimizer, paddle.optimizer.Optimizer) and not isinstance(
                    optimizer, paddle.fluid.contrib.mixed_precision.decorator.
                    OptimizerWithMixedPrecision):
4198 4199 4200 4201
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
                             "Optimizer, but the given type is {}.".format(
                                 type(optimizer)))
H
hutuxian 已提交
4202
        self._optimizer = optimizer
4203 4204 4205 4206 4207 4208

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4209 4210 4211 4212
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
4213
            "start_cpu_core_id must be a non-negative integer.")
H
hutuxian 已提交
4214
        self._start_cpu_core_id = start_cpu_core_id
4215 4216 4217 4218 4219 4220
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4221
        self._param_device_map = None
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
        self._pipeline_pair = []
        self._pp_ring_map = dict()

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32")
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize
                })
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
            if op.type == "reduce_any" else 'c_allreduce_sum',
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4259
                'ring_id': self.global_ring_id,
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
                self._op_role_key: self._op_role.Optimize,
                'use_calc_stream': True
            })
        offset += 1
        if op.type == "reduce_any":
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize
                })
4275
            offset += 1
4276
        return offset
H
hutuxian 已提交
4277

4278
    def _create_vars(self, block, ori_block):
4279
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4280
        used_var_set = set()
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
            # For op process vars on all devices, remove its input 
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4316 4317 4318 4319 4320 4321 4322 4323
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4324
            for var in vars:
4325 4326 4327
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4328 4329
                    continue
                used_var_set.add(var)
4330 4331
                if block._find_var_recursive(str(var)): continue
                source_var = ori_block._var_recursive(str(var))
4332
                if source_var.type == core.VarDesc.VarType.READER:
4333
                    dest_var = block.create_var(
4334 4335 4336
                        name=var,
                        type=core.VarDesc.VarType.READER,
                        persistable=source_var.persistable)
4337
                else:
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
                    dest_var = block._clone_variable(source_var, False)
                dest_var.stop_gradient = source_var.stop_gradient
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
            if self.use_sharding or not should_insert: continue
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4348

4349
    def _is_loss_grad_op(self, op):
4350 4351
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4352 4353 4354 4355
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

    def _is_backward_op(self, op):
4356 4357 4358 4359 4360 4361
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward))

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4362 4363

    def _is_optimize_op(self, op):
4364 4365
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize))
4366 4367 4368 4369 4370

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

4371
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4372
        """
4373
        Split a program into sections according to devices that ops run on.
4374
        The op whose op_device attr is "gpu:all" is copied to all sections.
4375 4376 4377

        Args:
            main_program (Program): the main program
4378
            devices: all used devices
H
hutuxian 已提交
4379
        """
4380
        # Map from device to its corresponding section program info
4381
        device_program_map = defaultdict(Program)
4382

4383
        block = main_program.block(0)
4384 4385
        for op in block.ops:
            device = op.attr(self._op_device_key)
4386 4387 4388
            # Copy ops whose op_device set to "gpu:all" to all sections.
            if device == "gpu:all":
                for device in devices:
4389 4390
                    program = device_program_map[device]
                    op_desc = op.desc
4391
                    ap_op = program.global_block().desc.append_op()
4392
                    ap_op.copy_from(op_desc)
4393
                    ap_op._set_attr(self._op_device_key, "")
4394 4395 4396
            else:
                program = device_program_map[device]
                op_desc = op.desc
4397
                ap_op = program.global_block().desc.append_op()
4398
                ap_op.copy_from(op_desc)
4399
                ap_op._set_attr(self._op_device_key, "")
4400

4401
        program_list = []
4402
        for key in devices:
4403
            program = device_program_map[key]
4404 4405
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4406

4407
        return program_list
H
hutuxian 已提交
4408

4409 4410 4411 4412 4413 4414 4415
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4416 4417 4418
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, \
            'For accumulators for Adam, the name must contain beta1_pow_acc ' \
            'or beta2_pow_acc.'
4419 4420 4421 4422
        param_name = var_name[0:var_name.index('_beta')]
        device = self._param_device_map[param_name]
        return device

4423 4424
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4425 4426 4427
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4428 4429
            if device == "cpu":
                assert op.type == "fill_constant", (
4430 4431
                    "For ops in startup program with the op_device attribute "
                    "of cpu, they must be of type fill_constant.")
4432 4433 4434
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4435
            if device:
4436
                device_index = int(device.split(':')[1])
4437
            else:
4438 4439
                # LR related ops
                device = None
4440
            if device and device_index != device_id: continue
4441
            op_desc = op.desc
4442
            ap_op = new_startup_program.global_block().desc.append_op()
4443 4444 4445
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4446
        self._create_vars(new_startup_program.global_block(), block)
4447 4448
        return new_startup_program

4449
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4450
        """
4451
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4452
        """
4453 4454 4455 4456 4457 4458
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4459 4460 4461 4462 4463 4464 4465 4466
        post_ops = self.input_var_to_op[var_name]
        if post_ops == None: return None
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4467

4468
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4469
        """
4470 4471
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4472
        """
4473 4474 4475 4476 4477 4478
        prev_ops = self.output_var_to_op[var_name]
        if prev_ops == None: return None
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4479
                break
4480
        return result_op
4481 4482

    def _rename_arg(self, op, old_name, new_name):
4483 4484
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4498 4499
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4500
            need_check_feed=ref_var.desc.need_check_feed())
4501
        new_var.stop_gradient = ref_var.stop_gradient
4502 4503 4504 4505 4506 4507 4508 4509
        return new_var

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4510

4511 4512 4513 4514 4515 4516
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4517
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4518
        """
4519
        Get the op_device attribute of a op.
H
hutuxian 已提交
4520
        """
4521 4522 4523
        device = op.attr(self._op_device_key) \
            if op.has_attr(self._op_device_key) else None
        if device:
B
Baibaifan 已提交
4524
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', "Now, only gpu and npu devices are " \
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
                "supported in pipeline parallemism."
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
            op._set_attr(self._op_device_key, "gpu:all")
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
                assert '@RENAME@' in name, \
                    "The op must be sum used to accumulate renamed vars."
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
                'op_device'), "{} has no op_device attr for var {}".format(
                    post_op.type, out_name)
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
        elif (op.type == "cast" or
              op.type == "scale") and self._is_backward_op(op):
4557
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4558 4559
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4560
            # for checkpoint offloading
4561 4562 4563 4564 4565
            assert len(op.input_arg_names) == 1 and len(
                op.output_arg_names) == 1
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4566
                post_op = self._find_post_op(idx, output_name)
4567 4568 4569
                op._set_attr(self._op_device_key,
                             post_op.attr(self._op_device_key))
            else:
4570
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
                op._set_attr(self._op_device_key,
                             prev_op.attr(self._op_device_key))
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
            while (not block.ops[idx + offset].has_attr(self._op_device_key) or
                   not block.ops[idx + offset].attr(self._op_device_key)):
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4587
            param_name = self._strip_grad_suffix(grad_name[0])
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
            assert self._op_role_var_key in op.attr_names, "gradient_clip " \
                "and regularization ops must have op_role_var attribute."
            op_role_var = op.attr(self._op_role_var_key)
            assert len(op_role_var) == 2, "op_role_var for gradient_clip " \
                "regularization ops must have two elements."
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
            # For sum op added by global gradient clip, it must be 
            # put on all devices
            if (op.type == 'sum' or op.type == 'sqrt' or
                    op.type == 'fill_constant' or
                    op.type == 'elementwise_max' or
                    op.type == 'elementwise_div'):
                device = "gpu:all"
            op._set_attr(self._op_device_key, device)
B
Baibaifan 已提交
4608 4609
        elif op.type == "alloc_float_status":
            op._set_attr(self._op_device_key, "gpu:all")
4610 4611
        else:
            other_known_ops = [
4612 4613 4614 4615 4616
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
B
Baibaifan 已提交
4617
                'alloc_float_status',
4618 4619 4620 4621 4622 4623 4624 4625
            ]
            assert op.type in other_known_ops, "For other ops without " \
                "op_device set, they must be one of {}, but it " \
                "is {}".format(other_known_ops, op.type)
            assert self._is_optimize_op(op)
            op._set_attr(self._op_device_key, "gpu:all")

    def _add_op_device_attr(self, block):
4626
        """
4627 4628
        Add op_device attrribute for ops in block that have 
        not that attribute set.
4629
        """
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
        for idx, op in enumerate(list(block.ops)):
            if (op.type == "create_py_reader" or op.type == "read" or
                    op.type == "create_double_buffer_reader"):
                # Copy read related ops to all section to make them exit 
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
                op._set_attr(self._op_device_key, "gpu:all")
                continue
            # op_device attribute has been set
            if self._get_op_device_attr(op): continue
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
4643

4644 4645
    def _check_validation(self, block):
        """
4646 4647 4648
        Check whether ops in a block have both the op_device and the 
        op_role attributes set.
        Then, return all devices in order.
4649
        """
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
4660
        for op in block.ops:
4661
            if not op._has_kernel(op.type):
4662 4663 4664 4665
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
4666 4667 4668 4669 4670 4671 4672 4673
            assert op.has_attr(self._op_role_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_role_key))
            assert int(op.attr(self._op_role_key)) in valid_op_role_value, \
                "op_role {} for op {} must be one of {}".format(
                    op.attr(self._op_role_key),
                    op.type,
                    valid_op_role_value)
4674 4675 4676
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
4677 4678 4679 4680 4681 4682

            device = op.attr(self._op_device_key)
            assert device, ("op_device attribute for op "
                            "{} has not been set.".format(op.type))
            if device == "gpu:all": continue
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
4683 4684 4685
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
                "for pipeline parallelism.")
4686 4687 4688
            if not device in device_list:
                device_list.append(device)
        return device_list
4689

4690
    def _insert_sendrecv_ops_for_boundaries(self, block):
4691
        """
4692
        Insert a pair of send and recv ops for every two
4693 4694
        consecutive ops on different devices.
        """
4695
        # A map from var to device where op takes it as input,
4696
        # avoiding multiple send and recv ops.
4697
        input_var_to_device = dict()
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
            'first_optimize_index': first_optimize_index
        }
4708

4709
        for index, op in enumerate(list(block.ops)):
4710 4711
            cur_device = op.attr(self._op_device_key)
            if cur_device == "gpu:all": continue
4712 4713
            for var_name in op.input_arg_names:
                var = block.var(var_name)
4714
                # skip data var
4715
                if var.is_data: continue
4716
                prev_device = None
4717 4718 4719 4720
                generate_ops = self.output_var_to_op.get(var_name)
                if generate_ops is None:
                    if var_name not in self._param_device_map:
                        continue
4721
                    prev_device = self._param_device_map[var_name]
4722 4723 4724

                prev_op = self._find_prev_op(index, var_name)

4725 4726 4727
                if not prev_device:
                    prev_device = prev_op.attr(self._op_device_key) \
                        if prev_op else None
4728

4729 4730 4731
                if prev_device is None or prev_device == "gpu:all": continue

                if prev_device == cur_device: continue
4732

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
4763
                    var = block.vars[var_name]
4764 4765 4766
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
4767 4768 4769 4770 4771 4772 4773
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
4774

4775
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
4776
                        block._insert_op_without_sync(
4777
                            index=index + extra_index_info['index'],
4778 4779 4780
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
4781
                                self._op_device_key: prev_dev,
4782 4783 4784 4785 4786
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
                                'ring_id': ring_id
                            })
4787
                        extra_index_info['index'] += 1
4788 4789 4790
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]
F
fangshuixun007 已提交
4791
                        block._insert_op_without_sync(
4792
                            index=index + extra_index_info['index'],
4793 4794 4795
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
4796
                                'out_shape': var_shape,
4797
                                'dtype': var.dtype,
4798
                                self._op_device_key: cur_dev,
4799 4800 4801 4802 4803
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
                                'ring_id': ring_id
                            })
4804
                        extra_index_info['index'] += 1
4805
                    elif self.schedule_mode == '1F1B':  # 1F1B
F
fangshuixun007 已提交
4806
                        block._insert_op_without_sync(
4807
                            index=index + extra_index_info['index'],
4808 4809 4810 4811
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
4812
                                self._op_device_key: prev_dev,
4813 4814
                                self._op_role_key: op_role,
                            })
4815
                        extra_index_info['index'] += 1
F
fangshuixun007 已提交
4816
                        block._insert_op_without_sync(
4817
                            index=index + extra_index_info['index'],
4818 4819 4820
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
4821
                                self._op_device_key: prev_dev,
4822 4823 4824 4825 4826
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
                            })
4827
                        extra_index_info['index'] += 1
4828 4829 4830 4831 4832 4833 4834 4835
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
                                'first_optimize_index']
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
F
fangshuixun007 已提交
4836
                        block._insert_op_without_sync(
4837
                            index=insert_index + extra_index_info['index'],
4838 4839 4840 4841
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
4842
                                self._op_device_key: prev_dev,
4843
                                self._op_role_key: new_op_role,
4844 4845
                                'ring_id': ring_id,
                            })
4846 4847
                        if int(op_role) == int(self._op_role.Forward):
                            extra_index_info['index'] += 1
4848 4849 4850
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]
F
fangshuixun007 已提交
4851
                        block._insert_op_without_sync(
4852
                            index=index + extra_index_info['index'],
4853 4854 4855 4856 4857
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
4858
                                self._op_device_key: cur_dev,
4859 4860 4861 4862 4863
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
                                'ring_id': ring_id
                            })
4864
                        extra_index_info['index'] += 1
4865 4866 4867 4868 4869
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
                            "The given value is {}.".format(self.schedule_mode))

4870 4871 4872 4873 4874
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]))
        block._sync_with_cpp()

4875
    def _insert_loss_scale(self, block):
4876
        """
4877
        Scale the loss corresponding to number of micro-batches.
4878
        """
4879
        if self._num_microbatches == 1: return
4880
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
4881 4882 4883 4884 4885 4886 4887 4888
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
4889
                        'scale': 1.0 / self._num_microbatches,
4890 4891 4892 4893
                        self._op_role_key: self._op_role.Backward
                    })
                break

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
            if not self._is_optimize_op(op): continue
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
            if op.type == 'cast': continue
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
                if not core.grad_var_suffix() in name: continue
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

    def _accumulate_gradients(self, block, pp_allreduce_in_optimize=False):
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
        merged_gradient_names = []
        first_opt_op_idx = None

        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
4925
                    continue
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937

            if self._is_backward_op(op) and not first_opt_op_idx:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(block.ops): return
                if block.ops[first_opt_op_idx].type == "c_sync_comm_stream":
                    first_opt_op_idx += 1

            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0: continue
4938 4939
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
                    offset = 0
                    param_name = op_role_var[i]
                    if not block.has_var(param_name): continue
                    if '@BroadCast' in param_name: continue
                    param_grad_name = param_name + core.grad_var_suffix()
                    merged_param_grad_name = param_grad_name + '@MERGED'
                    if not block.has_var(merged_param_grad_name):
                        self._create_var(block, block.vars[param_name],
                                         merged_param_grad_name)
                    assert block.has_var(merged_param_grad_name)
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
4953
                    block._insert_op(
4954 4955 4956 4957
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
4958
                        attrs={
4959 4960 4961 4962 4963
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
                            # a trick to run this op once per mini-batch
                            self._op_role_key: self._op_role.Optimize.LRSched,
4964 4965
                        })
                    offset += 1
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
                    if not 'cast_fp16' in grad_name:
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='sum',
                            inputs={'X': [grad_var, merged_param_grad_var]},
                            outputs={'Out': merged_param_grad_var},
                            attrs={
                                self._op_role_key: self._op_role.Backward,
                            })
                        offset += 1
                        merged_gradient_names.append(merged_param_grad_name)
                    else:
                        # cast gradient to fp32 to accumulate to merged gradient
                        cast_grad_var_name = param_grad_name + '@TMP'
                        cast_grad_var = self._create_var(block, param_grad_var,
                                                         cast_grad_var_name)
                        cast_grad_var.persistable = False
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            })
                        offset += 1
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='sum',
                            inputs={
                                'X': [merged_param_grad_var, cast_grad_var]
                            },
                            outputs={'Out': merged_param_grad_var},
                            attrs={
                                self._op_role_key: self._op_role.Backward,
                            })
                        offset += 1
                        merged_gradient_names.append(merged_param_grad_name)
        return merged_gradient_names
5009 5010 5011

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5012
        for prog in program_list:
5013 5014 5015 5016 5017 5018
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5019 5020
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5021 5022 5023
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5024
                self._create_vars(new_sub_block, origin_sub_block)
5025
                op._set_attr('sub_block', new_sub_block)
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5042
        for prog in program_list:
5043 5044
            block = prog.block(0)
            for var_name in block.vars:
5045
                if var_name == "double_buffer_0": continue
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5063
                    if op.type == "recv_v2" or op.type == "create_py_reader" or \
5064
                        op.type == "read" or op.type == "update_loss_scaling":
5065
                        continue
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5085
            write_dev_index = int(write_device.split(':')[1])
5086 5087 5088
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
5089 5090 5091
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
5092 5093 5094 5095 5096 5097 5098 5099 5100
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
5101 5102 5103

                write_block._insert_op(
                    index=0,
5104
                    type='send_v2',
5105 5106 5107
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        self._op_device_key: write_device,
5108
                        'use_calc_stream': False,
5109 5110
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5111 5112
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
5113
                        'ring_id': ring_id
5114 5115 5116
                    })
                read_block._insert_op(
                    index=0,
5117
                    type='recv_v2',
5118 5119
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5120 5121
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
5122
                        self._op_device_key: read_device,
5123
                        'use_calc_stream': False,
5124 5125 5126
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
5127 5128
                        'peer': write_dev_index,
                        'ring_id': ring_id
5129
                    })
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id
                    })

    def _is_gradient_clip_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/gradient_clip")

    def _is_regularization_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/regularization")
H
hutuxian 已提交
5150

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
        self.output_var_to_op = dict()
        # A map from var to op which takes it as input.
        self.input_var_to_op = dict()

        for index, op in enumerate(list(block.ops)):
            for var_name in op.input_arg_names:
                ops = self.input_var_to_op.setdefault(var_name, [])
                ops.append([op, index])
            for var_name in op.output_arg_names:
                ops = self.output_var_to_op.setdefault(var_name, [])
                ops.append([op, index])

H
hutuxian 已提交
5168 5169 5170 5171 5172
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
5173
        main_block = loss.block
5174
        self.origin_main_block = main_block
5175
        main_program = main_block.program
5176 5177
        if startup_program is None:
            startup_program = default_startup_program()
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192

        assert main_program._pipeline_opt, 'Please use pipeline with fleet.'
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
        ]
        for key in required_keys:
            assert key in main_program._pipeline_opt, \
                'Please use pipeline with fleet to use {}.'.format(key)
        self.local_rank = main_block.program._pipeline_opt['local_rank']
        self.schedule_mode = main_block.program._pipeline_opt['schedule_mode']
5193 5194
        self.micro_batch_size = main_block.program._pipeline_opt[
            'micro_batch_size']
5195
        self.use_sharding = main_block.program._pipeline_opt['use_sharding']
5196
        self.ring_id = main_block.program._pipeline_opt['ring_id']
5197 5198 5199 5200 5201
        self.global_ring_id = main_block.program._pipeline_opt['global_ring_id']

        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._param_device_map = self._origin_optimizer._param_device_map
5202

5203
        self._get_input_output_info(main_block)
5204 5205 5206
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

5218 5219 5220 5221 5222
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
            "another in the order of their ids.")
        # Step2: add send and recv ops between section boundaries
5223
        self._insert_sendrecv_ops_for_boundaries(main_block)
5224

5225
        # Step3: split program into sections and add pairs of
5226 5227
        # send and recv ops for data var.
        main_program = main_block.program
5228
        program_list = self._split_program(main_program, device_list)
5229
        for p in program_list:
5230
            self._create_vars(p.global_block(), main_block)
5231

5232
        # Step4: Special Case: process persistable vars that exist in
5233
        # multiple sections
5234 5235 5236
        # FIXME 
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
5237

5238
        # Step5: Add sub blocks for section programs
5239 5240
        self._add_sub_blocks(main_block, program_list)

5241
        self.local_rank %= len(device_list)
5242
        place_list = []
5243 5244
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
5245 5246 5247 5248
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
5249

5250
        # Step6: Split startup program
5251
        new_startup_program = self._split_startup_program(startup_program,
5252
                                                          self.local_rank)
5253 5254 5255 5256

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
5257
        real_block = program_list[self.local_rank].global_block()
5258 5259 5260 5261 5262 5263 5264 5265
        self._insert_loss_scale(real_block)
        if not self.use_sharding:
            # Step7: clear gradients before each mini-batch and 
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
5266

5267 5268 5269 5270
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
5271
        main_program._pipeline_opt = {
H
hutuxian 已提交
5272 5273
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
5274
            "pipeline_stage": self.local_rank,
5275
            "num_pipeline_stages": len(device_list),
5276
            "schedule_mode": self.schedule_mode,
5277
            "inner_parallelism": len(device_list),
5278 5279
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
5280
            "place_id": place_id,
5281
            "sync_steps": -1,
L
lilong12 已提交
5282
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
5283 5284
            "start_cpu_core_id": self._start_cpu_core_id,
        }
5285
        return optimize_ops, params_grads, program_list, self._pipeline_pair, self._pp_ring_map
M
mapingshuo 已提交
5286 5287


M
mapingshuo 已提交
5288 5289
class RecomputeOptimizer(Optimizer):
    """
5290
	:api_attr: Static Graph
S
swtkiwi 已提交
5291

M
mapingshuo 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
5352 5353
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
5354 5355
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
5356 5357
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
5358
        self.enable_offload = False
M
mapingshuo 已提交
5359 5360

    def _set_checkpoints(self, checkpoints):
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
5372 5373
        self._checkpoints = checkpoints

J
JZ-LIANG 已提交
5374 5375 5376 5377
    # should enable offload before calling backward 
    def _enable_offload(self):
        self.enable_offload = True

5378 5379
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
5380
        """
5381
	    :api_attr: Static Graph
S
swtkiwi 已提交
5382

M
mapingshuo 已提交
5383 5384 5385 5386
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
5387
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
5411 5412
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5450
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5451 5452 5453 5454
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5455
                    no_grad_set=None)
M
mapingshuo 已提交
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=True)

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=False)

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
        to instantiate their tensor hold_, which could tell us whether 
        the host memory could hold all the checkpoints from all the 
        GPU devices in this node. 
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
                stop_gradient=True)
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                })

        return

    def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname,
5522
                                op_role, dst_place_type):
J
JZ-LIANG 已提交
5523 5524 5525 5526 5527 5528 5529 5530
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
5531 5532 5533 5534
            attrs={
                "dst_place_type": int(dst_place_type),
                OP_ROLE_KEY: op_role
            })
J
JZ-LIANG 已提交
5535 5536 5537 5538 5539 5540 5541

    def _insert_fetch_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname)

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
5542
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
5543 5544 5545 5546 5547

    def _insert_offload_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname)
        pinned_varname = self.checkpoint_name2pinned_name[varname]
5548
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819

    def _insert_sync_op(self, op_idx, checkpoint_name):
        # single stream offload no need sync 
        pass

    def _record_fetch_op(self, idx):
        assert len(self.un_fetch_checkpoint_names
                   ) > 0, "Could NOT found checkpoint to fetch"
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
        assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name)
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
        assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format(
            checkpoint_name)
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, to favor throughput        
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
            self.block.ops), "Could NOT found backword op in prog"

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
            self.bw_strart_op_idx)
        last_last_fetch_checkpoint = None

        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]):
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
                            second_to_last_fetch_checkpoint = fetched_checkpoint_varname
                            # there is NO fetch ahead the first checkpoint 
                            if input_var != self.sorted_checkpoint_names[0]:
                                fetched_checkpoint_varname = self._record_fetch_op(
                                    idx)

                        # should check the current used checkpoint is ths last fetch one 
                        assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var)
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
                            self.checkpoint_name2fetch_name[input_var])
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
                                input_var))

        assert len(self.un_fetch_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] fetch op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
        assert len(
            self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format(
                [ele[1] for ele in self.idx2insertions.values()])

    def _parse_forward(self):

        self.idx2insertions = {}
        # don't offload the last checkpoints, faster, less memory saving       
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
                'idx': -1
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
            self.block.ops), "Could NOT found Forward op in prog"
        last_offload_checkpoint = None

        for i, op in enumerate(self.block.ops[self.fw_strart_op_idx:
                                              self.bw_strart_op_idx]):

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
                            if self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['count'] == 0:
                                self._record_sync_op(idx,
                                                     last_offload_checkpoint)
                            else:
                                last_usage_idx = self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['idx']
                                assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint)
                                self._record_sync_op(last_usage_idx + 1,
                                                     last_offload_checkpoint)
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
                            "There should be just ONE op that output checkpoint [{}]".
                            format(output_var))
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)
                    assert last_offload_checkpoint == self.sorted_checkpoint_names[
                        -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                            last_checkpoint, self.sorted_checkpoint_names[-2],
                            last_offload_checkpoint)
                    # sync if last checkpoint has not been sync
                    if self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx'] == 0:
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx']
                        assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint)
                        self._record_sync_op(last_usage_idx + 1,
                                             last_offload_checkpoint)
            # record checkpoint usage  
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
                    assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format(
                        input_var)
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

        assert len(self.un_offload_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints))

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
                range(self.fw_strart_op_idx, self.bw_strart_op_idx)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Insert [{}] offload_sync op.".format(
                        checkpoint_name))
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
        assert len(self.idx2insertions
                   ) == 0, "{} checkpoints left un-Offloaded".format(
                       [ele[1] for ele in self.idx2insertions.values()])

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
        1. create pinned vars and temp vars 
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
            startup_program = fluid.default_startup_program()

        with program_guard(self._main_program, startup_program):
            assert len(self.checkpoint_shape) > 0, (
                "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".
                format(self.checkpoint_shape))
            assert all([ele > 0 for ele in self.checkpoint_shape]), (
                "all ele in checkpoints shape {} should be a determined integer larger than 0".
                format(self.checkpoint_shape))
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
                    checkpoint_varname)
                self.checkpoint_name2pinned_name[
                    checkpoint_varname] = pinned_var_name
                self.checkpoint_name2fetch_name[
                    checkpoint_varname] = fetch_var_name
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

M
mapingshuo 已提交
5820 5821 5822 5823 5824
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
5825
                 callbacks=None):
M
mapingshuo 已提交
5826 5827 5828 5829 5830 5831 5832
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
5833 5834
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5859
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5860 5861 5862 5863
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5864
                    no_grad_set=None)
M
mapingshuo 已提交
5865 5866
                print("Finished backward")
        """
5867 5868
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
5869 5870 5871 5872 5873 5874 5875 5876

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
5877 5878 5879 5880 5881 5882 5883
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)
            else:
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
5921
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
5922 5923 5924 5925 5926 5927 5928 5929
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
5930
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
5931 5932 5933 5934
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
5935
                    no_grad_set=None)
M
mapingshuo 已提交
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
5950
                 no_grad_set=None):
5951
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
5952 5953 5954 5955 5956 5957 5958 5959 5960
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
5961
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
5962 5963 5964 5965 5966 5967 5968

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
5969
class LookaheadOptimizer(object):
5970
    r"""
5971
	:api_attr: Static Graph
S
swtkiwi 已提交
5972

M
mapingshuo 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
5998
            import numpy.random as random
M
mapingshuo 已提交
5999

6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
            paddle.enable_static()
        
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
            loss = fluid.layers.mean(x=loss)
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
6016

6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
            
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
            
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
6027 6028 6029 6030 6031

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
6032 6033
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

6085 6086 6087 6088 6089 6090 6091 6092
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
6093

6094 6095 6096 6097 6098 6099 6100
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
6101

6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
6120 6121 6122 6123 6124
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
6138
        return mini_out
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

6196 6197
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
6213
        self._optimize_ops = None
6214

6215 6216 6217 6218 6219 6220
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

6221
    def backward(self,
6222 6223 6224
                 loss,
                 startup_program=None,
                 parameter_list=None,
6225 6226
                 no_grad_set=None,
                 callbacks=None):
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
        assert self._is_the_backward_op(op), \
            'grad.op={} is not the backward op which produces the grad={}' \
            .format(op, grad.name)

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
        assert param.name in var_attr, \
            'when using GradientMergeOptimizer, param={} must be in var_attr={}' \
            .format(param.name, var_attr)
        assert grad.name in var_attr, \
            'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \
            .format(param.name, var_attr)

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=True,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var,
                        'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var})

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
6354 6355

        #TODO(mapingshuo) support sparse embedding
6356 6357
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
6358
            assert (
6359
                param.type != core.VarDesc.VarType.SELECTED_ROWS
6360 6361
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

6362
            self._remove_op_role_var(param, grad)
6363

6364
        param_to_grad = {k.name: v for (k, v) in params_grads}
6365 6366 6367
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

6368 6369 6370 6371 6372
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
6373 6374 6375 6376 6377 6378 6379 6380
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
6381

6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
                inputs={'X': grad,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={'axis': -1,
                       'use_mkldnn': False})
            self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var,
                                     cond)
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False
                        })
6427

6428 6429 6430 6431 6432 6433
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
6434

6435 6436
            self._optimize_ops = self.inner_optimizer.apply_gradients(
                new_params_grads)
6437

6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad)

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        assert isinstance(loss, Variable), "The loss should be an Variable."

        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
6466 6467

        return optimize_ops, params_grads