Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ed724065
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ed724065
编写于
7月 27, 2020
作者:
M
mapingshuo
提交者:
GitHub
7月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gradient Merge Optimizer (#25625)
上级
f45f8363
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
297 addition
and
0 deletion
+297
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+220
-0
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+77
-0
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
ed724065
...
...
@@ -4933,3 +4933,223 @@ class LookaheadOptimizer(object):
with
switch
.
default
():
pass
return
mini_out
class
GradientMergeOptimizer
(
object
):
"""
Gradient Merge, also called as Gradient Accumulation,
is a training strategy for larger batches. With this strategy,
the parameter will not be updated until specific steps.
For each step, the forward network and the backward network
will run to calculate the gradient of the parameters.
For every k step, the optimization network will run,
applying a specific optimization method (such as SGD, Adam)
to the parameters.
Args:
inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
which update the parameters
k_steps (int): the update period of the parameters
avg (bool): whether to average the gradients of each mini-batch,
the default value is `True`
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data(batch_size):
return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
"y": np.random.random(size=(batch_size, 1)).astype('int64')}
def mlp(input_x, input_y, hid_dim=128, label_dim=2):
fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
sum_cost = fluid.layers.reduce_mean(cost)
return sum_cost, fc_1, prediction
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
cost, fc_1, pred = mlp(input_x, input_y)
sgd = fluid.optimizer.Adam(learning_rate=0.01)
sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
sgd.minimize(cost)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for i in range(10):
cost_val = exe.run(feed=gen_data(32),
program=fluid.default_main_program(),
fetch_list=[cost.name])
print("step=%d, cost=%f" % (i, cost_val[0]))
"""
def
__init__
(
self
,
inner_optimizer
,
k_steps
=
1
,
avg
=
True
):
if
framework
.
in_dygraph_mode
():
raise
Exception
(
"In dygraph, we don't support GradientMergeOptimizer."
"You can do Gradient merge by yourself with k-times forward + backward, "
"and one-time optimizer.minimize()"
)
assert
(
inner_optimizer
is
not
None
),
"inner optimizer can not be None"
assert
(
isinstance
(
k_steps
,
int
)
and
k_steps
>
0
),
"k_steps should be a positive integer"
self
.
inner_optimizer
=
inner_optimizer
self
.
k_steps
=
k_steps
self
.
type
=
"gradient_merge"
self
.
avg
=
avg
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
assert
isinstance
(
loss
,
Variable
),
"The loss should be an Variable."
assert
(
parameter_list
is
None
),
"The parameter_list should be None when using GradientMergeOptimizer"
assert
(
no_grad_set
is
None
),
"The no_grad_set should be None when using GradientMergeOptimizer"
params_grads
=
self
.
inner_optimizer
.
backward
(
loss
,
startup_program
=
startup_program
)
#TODO(mapingshuo) support sparse embedding
for
k
,
v
in
params_grads
:
assert
(
v
.
type
!=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
),
"SELECTED_ROWS is not supported in GradientMergeOptimizer for now"
param_to_grad
=
{
k
.
name
:
v
for
(
k
,
v
)
in
params_grads
}
# Get startup_program and main_program
if
startup_program
is
None
:
startup_program
=
default_startup_program
()
main_block
=
loss
.
block
# add some vars to the main_program and startup_program
startup_block
=
startup_program
.
global_block
()
param_names
=
param_to_grad
.
keys
()
param_to_gradient_merge
=
{}
for
param_name
in
param_names
:
param_var
=
main_block
.
var
(
param_name
)
assert
(
param_var
is
not
None
)
gradient_merge_var
=
main_block
.
create_var
(
name
=
param_name
+
"@GRAD@GradientMerge"
,
shape
=
param_var
.
shape
,
dtype
=
param_var
.
dtype
,
persistable
=
True
)
param_to_gradient_merge
[
param_name
]
=
gradient_merge_var
startup_gradient_merge_var
=
startup_block
.
create_var
(
name
=
param_name
+
"@GRAD@GradientMerge"
,
shape
=
param_var
.
shape
,
dtype
=
param_var
.
dtype
,
persistable
=
True
)
startup_block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
startup_gradient_merge_var
},
attrs
=
{
"shape"
:
param_var
.
shape
,
"dtype"
:
param_var
.
dtype
,
"value"
:
float
(
0
),
})
with
framework
.
program_guard
(
main_block
.
program
,
startup_program
):
# Add Var k to main prog and startup prog
gradient_merge_k
=
layers
.
create_global_var
(
name
=
"gradient_merge_k"
,
shape
=
[
1
],
value
=
int
(
self
.
k_steps
),
dtype
=
'int32'
,
persistable
=
True
)
# Add Var step
gradient_merge_step
=
layers
.
create_global_var
(
name
=
"gradient_merge_step"
,
shape
=
[
1
],
value
=
int
(
0
),
dtype
=
'int32'
,
persistable
=
True
)
layers
.
increment
(
x
=
gradient_merge_step
,
value
=
1.0
,
in_place
=
True
)
# gradient merge
zero_var
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.0
)
one_var
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
mod
=
layers
.
elementwise_mod
(
gradient_merge_step
,
gradient_merge_k
)
with
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
mod
!=
zero_var
):
# 1. update the gradient_merge_vars
# gradient_merge_vars += gradient_vars
cur_block
=
main_block
.
program
.
current_block
()
for
param_name
in
param_names
:
grad
=
param_to_grad
[
param_name
]
grad_merge
=
param_to_gradient_merge
[
param_name
]
cur_block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
'X'
:
grad
,
'Y'
:
grad_merge
},
outputs
=
{
'Out'
:
grad_merge
},
attrs
=
{
'axis'
:
-
1
,
'use_mkldnn'
:
False
})
with
switch
.
default
():
# 1. update the graient_vars
# gradient_vars += gradient_merge_vars
cur_block_idx
=
main_block
.
program
.
current_block_idx
cur_block
=
main_block
.
program
.
current_block
()
for
param_name
in
param_names
:
grad
=
param_to_grad
[
param_name
]
grad_merge
=
param_to_gradient_merge
[
param_name
]
if
self
.
avg
:
tmp_var
=
layers
.
elementwise_add
(
grad
,
grad_merge
)
cur_block
.
append_op
(
type
=
'scale'
,
inputs
=
{
'X'
:
tmp_var
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'scale'
:
1.0
/
self
.
k_steps
,
'bias'
:
0.0
,
'bias_after_scale'
:
False
})
else
:
cur_block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
'X'
:
grad
,
'Y'
:
grad_merge
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'axis'
:
-
1
,
'use_mkldnn'
:
False
})
# 2. apply_optimize
target_grad_block
=
main_block
.
program
.
_create_block
(
parent_idx
=
cur_block
.
parent_idx
)
target_grad_block
.
_set_forward_block_idx
(
cur_block_idx
)
main_block
.
program
.
current_block_idx
=
cur_block_idx
optimize_ops
=
self
.
inner_optimizer
.
apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
params_grads
)
# 3. clear gradient_merge_vars
for
param_name
in
param_names
:
grad_merge
=
param_to_gradient_merge
[
param_name
]
layers
.
fill_constant
(
shape
=
grad_merge
.
shape
,
dtype
=
grad_merge
.
dtype
,
value
=
0.0
,
out
=
grad_merge
)
return
optimize_ops
,
params_grads
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
ed724065
...
...
@@ -948,5 +948,82 @@ class TestRecomputeOptimizerCUDA(unittest.TestCase):
self
.
assertEqual
(
drop_vec
[
0
].
tolist
(),
drop_vec
[
1
].
tolist
())
class
TestGradientMergeOptimizer
(
unittest
.
TestCase
):
def
net
(
self
):
program
=
framework
.
Program
()
block
=
program
.
global_block
()
mul_x
=
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
5
,
10
],
lod_level
=
0
,
name
=
"mul.x"
)
mul_y
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
10
,
8
],
lod_level
=
0
,
name
=
"mul.y"
)
mul_out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out"
)
b1
=
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"b1"
)
b1_out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"b1_out"
)
mean_out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
block
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
mul_x
,
"Y"
:
mul_y
},
outputs
=
{
"Out"
:
mul_out
},
attrs
=
{
"x_num_col_dims"
:
1
})
block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
mul_out
,
"Y"
:
b1
},
outputs
=
{
"Out"
:
b1_out
})
block
.
append_op
(
type
=
"mean"
,
inputs
=
{
"X"
:
b1_out
},
outputs
=
{
"Out"
:
mean_out
})
return
mean_out
def
test_program_desc
(
self
,
):
cost
=
self
.
net
()
main_program
=
cost
.
block
.
program
init_program
=
framework
.
Program
()
self
.
assertEqual
(
main_program
.
num_blocks
,
1
)
self
.
assertEqual
(
len
(
cost
.
block
.
ops
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
cost
.
block
.
ops
],
[
"mul"
,
"elementwise_add"
,
"mean"
])
opt
=
optimizer
.
SGD
(
learning_rate
=
1.0
)
opt
=
optimizer
.
GradientMergeOptimizer
(
opt
,
k_steps
=
4
)
with
framework
.
program_guard
(
main_program
,
init_program
):
ops
,
params_grads
=
opt
.
minimize
(
cost
)
self
.
assertEqual
(
main_program
.
num_blocks
,
4
)
# main block
self
.
assertEqual
(
len
(
cost
.
block
.
ops
),
17
)
self
.
assertEqual
([
op
.
type
for
op
in
cost
.
block
.
ops
],
[
'mul'
,
'elementwise_add'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'increment'
,
'fill_constant'
,
'fill_constant'
,
'elementwise_mod'
,
'cast'
,
'not_equal'
,
'logical_not'
,
'conditional_block'
,
'conditional_block'
,
'conditional_block_grad'
])
# merge block
self
.
assertEqual
(
len
(
main_program
.
block
(
1
).
ops
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
main_program
.
block
(
1
).
ops
],
[
'elementwise_add'
,
'elementwise_add'
,
])
# reset block
self
.
assertEqual
(
len
(
main_program
.
block
(
2
).
ops
),
6
)
self
.
assertEqual
([
op
.
type
for
op
in
main_program
.
block
(
2
).
ops
],
[
'elementwise_add'
,
'scale'
,
'elementwise_add'
,
'scale'
,
'fill_constant'
,
'fill_constant'
])
# optimize block
self
.
assertEqual
(
len
(
main_program
.
block
(
3
).
ops
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
main_program
.
block
(
3
).
ops
],
[
'sgd'
,
'sgd'
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录