optimizer.py 60.1 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
S
rename  
sneaxiy 已提交
18
from .wrapped_decorator import signature_safe_contextmanager
19

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
M
minqiyang 已提交
33
from .imperative import base as imperative_base
34

35
__all__ = [
Q
qiaolongfei 已提交
36
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
37
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
38
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
39 40
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
41
]
Q
Qiao Longfei 已提交
42 43 44 45 46 47


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
48 49
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
50 51
    """

X
Xin Pan 已提交
52
    def __init__(self, learning_rate, regularization=None, name=None):
53
        if not isinstance(learning_rate, float) and \
54 55
                not isinstance(learning_rate, framework.Variable):
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
56
        self._name = name
D
dzhwinter 已提交
57
        self.regularization = regularization
58
        self._learning_rate = learning_rate
D
dzhwinter 已提交
59 60
        # the learning rate type should be inferenced from loss
        self._dtype = None
61
        # each program should have a independent learning rate
62
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
63
        self._learning_rate_map = dict()
64
        if isinstance(self._learning_rate, framework.Variable):
65 66
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
67 68 69 70 71
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
72
        self.helper = None
73 74 75 76
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
77

Q
Qiao Longfei 已提交
78
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
79
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
80

81 82 83 84
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
85
                raise TypeError(
86 87
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
88

89 90 91 92 93 94
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
Q
Qiao Longfei 已提交
95
            dtype='float32' if self._dtype is None else self._dtype,
96 97
            persistable=True)

Y
yuyang18 已提交
98
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
99 100 101 102
        """
        get global decayed learning rate
        :return:
        """
103 104
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
105
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
106

Q
Qiao Longfei 已提交
107 108 109 110 111
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

112 113 114 115
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
116 117
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
118
        else:
W
Wu Yi 已提交
119
            if param_lr == 1.0:
Y
yuyang18 已提交
120
                return self._global_learning_rate()
W
Wu Yi 已提交
121
            else:
X
Xin Pan 已提交
122 123 124
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
125
                    return self._global_learning_rate() * param_lr
126 127 128 129 130 131 132

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
133
        """
134 135
        pass

136
    def _finish_update(self, block, parameters_and_grads):
137 138 139 140 141 142 143 144
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
145
            None
146 147 148
        """
        pass

149 150 151 152 153 154
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
155 156 157 158 159 160 161 162 163
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
164 165
        if self._name is not None:
            name = self._name + "_" + name
166 167
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
X
polish  
Xin Pan 已提交
168 169
            if framework._in_imperative_mode():
                return self._accumulators[name][param.name]
170
            raise Exception("Accumulator {} already exists for parameter {}".
171
                            format(name, param.name))
172 173
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
174
        assert isinstance(self.helper, LayerHelper)
175 176 177 178 179

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
180
        var = self.helper.create_global_variable(
181
            name=var_name,
Q
Qiao Longfei 已提交
182
            persistable=True,
F
fengjiayi 已提交
183
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
184
            type=param.type,
185
            shape=shape)
Q
Qiao Longfei 已提交
186
        self.helper.set_variable_initializer(
187
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
188
        self._accumulators[name][param.name] = var
189
        return var
190 191 192 193 194 195 196 197 198 199 200

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
201 202
        if self._name is not None:
            name = self._name + "_" + name
203 204 205 206 207 208
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

209
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
210 211 212
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
213
          parameters_and_grads(list(tuple(Variable, Variable))):
214
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
215 216

        Returns:
217
          return_op_list: a list of operators that will complete one step of
218 219 220
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
221
        """
222 223 224 225 226
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
227
        # for parameters and extend _finish_update method to add custom ops.
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is None:
                continue
            with param_and_grad[0].block.program._optimized_guard(
                    param_and_grad), name_scope("optimizer"):
                if param_and_grad[0].trainable is True:
                    optimize_op = self._append_optimize_op(global_block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
256 257 258 259 260 261 262 263 264
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
265 266
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
282 283 284 285 286 287 288 289 290 291 292 293 294
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
295 296
        return new_param_grads, (table_param, table_grad), sgd_op

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
315

316 317
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
318

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        Examples:
            See examples in `apply_gradients`.
        """
        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
            callbacks.append(error_clip_callback)
        return append_backward(loss, parameter_list, no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
336

337 338
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

Q
Qiao Longfei 已提交
368 369
    def minimize(self,
                 loss,
370
                 startup_program=None,
Q
Qiao Longfei 已提交
371 372
                 parameter_list=None,
                 no_grad_set=None):
373 374 375 376 377
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
378

379 380 381 382 383 384
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
385

386 387 388
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
389
        """
390 391
        self._dtype = loss.dtype
        optimize_ops = []
392
        if framework._in_imperative_mode():
M
minqiyang 已提交
393
            if parameter_list is not None:
M
minqiyang 已提交
394
                parameters = parameter_list
M
minqiyang 已提交
395
            else:
396
                parameters = framework._imperative_tracer().all_parameters()
M
minqiyang 已提交
397 398 399

            params_grads = []
            for param in parameters:
400
                if not param.trainable:
401
                    continue
402 403 404 405 406 407 408 409
                if param._ivar._grad_ivar() is not None:
                    # create gradient variable
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True,
                        ivar=param._ivar._grad_ivar())
                    params_grads.append((param, grad_var))
410 411
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
412
                optimize_ops = self._create_optimization_pass(params_grads)
M
minqiyang 已提交
413
        else:
414
            program = loss.block.program
415 416 417 418
            with program_guard(program, startup_program):
                params_grads = self.backward(loss, startup_program,
                                             parameter_list, no_grad_set)
                optimize_ops = self.apply_gradients(params_grads)
M
minqiyang 已提交
419

Q
Qiao Longfei 已提交
420
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
421 422 423


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
424 425 426 427 428 429 430 431 432 433
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
434 435 436
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
437 438 439 440

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
441
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
442
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
443 444
    """

X
Xin Pan 已提交
445
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
446
        assert learning_rate is not None
Q
Qiao Longfei 已提交
447
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
448 449 450
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
451 452
        self.type = "sgd"

453 454
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
455

Q
Qiao Longfei 已提交
456 457 458 459 460 461
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
462
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
463
            },
M
minqiyang 已提交
464 465
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
466 467

        return sgd_op
468 469 470


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

485
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
486 487 488

        & else:

Q
qiaolongfei 已提交
489
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
490 491 492 493 494 495

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
496 497 498
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
499 500 501 502

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
503
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
504
            optimizer.minimize(cost)
505 506 507
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
508 509 510 511 512 513
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
514 515
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
516
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
517 518 519
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
520 521
        self.type = "momentum"
        self._momentum = momentum
522
        self._use_nesterov = bool(use_nesterov)
523 524 525 526 527

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
528
            self._add_accumulator(self._velocity_acc_str, p)
529 530 531 532 533 534 535 536 537 538 539 540 541

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
542
                "LearningRate": self._create_param_lr(param_and_grad)
543 544 545 546 547
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
548
            attrs={"mu": self._momentum,
M
minqiyang 已提交
549 550
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
551 552

        return momentum_op
553 554


555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
635 636
            },
            stop_gradient=True)
637 638 639 640

        return momentum_op


641
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
662 663 664
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
665
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
666 667 668 669 670 671

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
672 673 674
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
675 676 677 678
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
679
                 name=None,
X
xuezhong 已提交
680
                 initial_accumulator_value=0.0):
681 682
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
683
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
684 685 686
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
687 688
        self.type = "adagrad"
        self._epsilon = epsilon
689
        self.initial_accumulator_value = initial_accumulator_value
690 691 692 693 694

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
695
            self._add_accumulator(self._moment_acc_str, p)
696 697 698 699 700 701

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
702 703 704 705 706 707 708 709 710 711
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
712

713
        # Create the adagrad optimizer op
714 715 716 717 718 719
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
720
                "LearningRate": self._create_param_lr(param_and_grad)
721 722 723
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
724 725
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
726 727

        return adagrad_op
728 729 730


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
758
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
759
        name: A optional name prefix.
760 761 762 763 764 765
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
766 767 768 769 770 771 772

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

773 774 775
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
776 777
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
778 779 780 781 782

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
783
                 epsilon=1e-8,
X
Xin Pan 已提交
784
                 regularization=None,
Q
Qiao Longfei 已提交
785
                 name=None,
Q
Qiao Longfei 已提交
786
                 lazy_mode=False):
787 788 789 790
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
791
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
792 793 794
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
795 796 797 798
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
799
        self._lazy_mode = lazy_mode
800 801 802 803 804 805

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
806 807
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
808 809 810 811 812 813 814 815 816 817 818 819
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
820 821 822 823 824 825 826 827

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
828 829 830 831 832
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

833
        # create the adam optimize op
834 835 836 837 838
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
839
                "LearningRate": self._create_param_lr(param_and_grad),
840 841
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
842 843
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
844 845 846 847 848 849 850 851 852
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
853
                "epsilon": self._epsilon,
854 855
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
856 857
            },
            stop_gradient=True)
858 859 860

        return adam_op

861
    def _finish_update(self, block, param_and_grads):
862 863 864
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
865
        main_block = block.program.global_block()
866 867 868
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
869 870
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
871 872 873 874 875 876 877 878
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
879 880
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
881 882 883 884 885

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
886 887
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
888 889 890


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
921 922 923
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
924 925 926 927 928 929

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
930 931 932

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
933 934 935
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
936
    _beta1_pow_acc_str = "beta1_pow_acc"
937 938 939 940 941

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
942
                 epsilon=1e-8,
X
Xin Pan 已提交
943 944
                 regularization=None,
                 name=None):
945 946 947 948
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
949
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
950 951 952
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
953 954 955 956 957 958 959 960
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
961 962
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
963 964 965 966 967 968
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
969 970 971 972 973 974 975

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
976 977
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
978 979 980 981 982 983
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
984
                "LearningRate": self._create_param_lr(param_and_grad),
985 986
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
987
                "Beta1Pow": beta1_pow_acc
988 989 990 991 992 993 994 995 996 997
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
998 999
            },
            stop_gradient=True)
1000 1001 1002

        return adamax_op

1003
    def _finish_update(self, block, parameters_and_grads):
1004 1005 1006
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1007
        main_block = block.program.global_block()
1008 1009 1010
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1011 1012
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1013 1014 1015 1016 1017 1018
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1019 1020
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1021 1022 1023


class DecayedAdagradOptimizer(Optimizer):
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1046 1047 1048
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1049 1050 1051 1052 1053 1054

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1055 1056 1057

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1058 1059 1060
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1061 1062 1063 1064 1065 1066
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1067 1068 1069 1070
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1071
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1072 1073 1074
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1102 1103
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1104 1105

        return decayed_adagrad_op
1106 1107


1108
class AdadeltaOptimizer(Optimizer):
1109 1110
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1111

1112
    Simple Adadelta optimizer with average squared grad state and
1113
    average squared update state.
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1126
        learning_rate(float): global learning rate
1127 1128
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1129 1130 1131
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1132 1133 1134 1135 1136 1137 1138

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1139 1140 1141

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1142
    """
1143

1144 1145 1146
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1147 1148 1149 1150 1151 1152
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1153 1154 1155 1156 1157 1158
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1159
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1160 1161 1162
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1163 1164 1165 1166 1167
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1168 1169
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1170 1171 1172 1173 1174 1175

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1176 1177
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1199 1200
                   "rho": self._rho},
            stop_gradient=True)
1201 1202 1203 1204

        return adadelta_op


Q
qingqing01 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1215
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1216 1217 1218 1219

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1220
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1221 1222 1223 1224 1225 1226

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1227
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1243 1244 1245 1246
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1247
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1248 1249 1250 1251 1252 1253
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1254
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1255 1256 1257
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1258
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1259
            set 0.0 by default.
1260 1261 1262 1263
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1264 1265 1266
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1280
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1281 1282 1283 1284 1285 1286

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1287
                 centered=False,
X
Xin Pan 已提交
1288 1289
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1290
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1291 1292 1293
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1307
        self._centered = centered
Q
qingqing01 已提交
1308 1309 1310 1311 1312 1313 1314 1315

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1316
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1326 1327
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1328 1329 1330 1331 1332 1333 1334
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1335
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1336 1337 1338 1339 1340
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1341 1342
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1343 1344 1345 1346
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1347 1348
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1349 1350
            },
            stop_gradient=True)
Q
qingqing01 已提交
1351 1352 1353 1354

        return rmsprop_op


Q
qiaolongfei 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1397 1398 1399
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1400 1401 1402
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1412 1413 1414

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1415 1416 1417 1418 1419
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1420 1421 1422 1423 1424 1425 1426
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1427
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1428 1429 1430
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1471 1472
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1473 1474 1475 1476

        return ftrl_op


1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1491
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1492
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1493
Ftrl = FtrlOptimizer
1494
LarsMomentum = LarsMomentumOptimizer
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1510 1511 1512
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1513
    Examples:
Q
qiaolongfei 已提交
1514 1515 1516

      .. code-block:: python

1517
        optimizer = fluid.optimizer.Momentum()
1518 1519
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1520 1521 1522 1523 1524
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1525 1526 1527 1528

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1529 1530 1531
    """

    def __init__(self,
W
wanghaoshuang 已提交
1532
                 average_window_rate,
1533 1534
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1535 1536 1537 1538
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1539 1540 1541
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1542

1543
        self.params_grads = []
1544 1545
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1546
            if param.do_model_average != False:
1547 1548 1549 1550
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1551
                    stop_gradient=True)
1552
                self.params_grads.append((param, grad))
1553

1554
        for param, grad in self.params_grads:
1555 1556
            if grad is None:
                continue
X
Xin Pan 已提交
1557 1558
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1559
                self._append_average_accumulate_op(param)
1560

1561 1562 1563 1564
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1565
                self._add_average_apply_op(block, param_grad)
1566 1567 1568 1569 1570

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1571
                self._add_average_restore_op(block, param_grad)
1572

1573
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1574 1575 1576 1577 1578 1579
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1580
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1581
        old_num_accumulates = block._clone_variable(
1582
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1583
        num_updates = block._clone_variable(
1584 1585 1586 1587 1588 1589
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1590 1591 1592 1593
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1594
        ops._elementwise_div(x=sum, y=tmp, out=param)
1595 1596

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1597 1598
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
1636 1637
            },
            stop_gradient=True)
1638

S
rename  
sneaxiy 已提交
1639
    @signature_safe_contextmanager
1640
    def apply(self, executor, need_restore=True):
1641 1642
        """Apply average values to parameters of current model.
        """
1643 1644 1645 1646 1647 1648
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1649 1650 1651 1652

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1653
        executor.run(self.restore_program)