Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
11e78eba
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
11e78eba
编写于
1月 17, 2021
作者:
G
guofei
提交者:
GitHub
1月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Modify the calculation logic of LambOptimizer (#29313)
* Modify the calculation logic of LambOptimizer
上级
c5ffad12
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
544 addition
and
112 deletion
+544
-112
paddle/fluid/operators/optimizers/lamb_op.cc
paddle/fluid/operators/optimizers/lamb_op.cc
+42
-2
paddle/fluid/operators/optimizers/lamb_op.h
paddle/fluid/operators/optimizers/lamb_op.h
+257
-35
paddle/fluid/pybind/op_function_generator.cc
paddle/fluid/pybind/op_function_generator.cc
+4
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+21
-5
python/paddle/fluid/tests/unittests/test_imperative_optimizer_v2.py
...dle/fluid/tests/unittests/test_imperative_optimizer_v2.py
+4
-4
python/paddle/fluid/tests/unittests/test_lamb_op.py
python/paddle/fluid/tests/unittests/test_lamb_op.py
+42
-21
python/paddle/fluid/tests/unittests/test_lambv2_op.py
python/paddle/fluid/tests/unittests/test_lambv2_op.py
+127
-21
python/paddle/optimizer/lamb.py
python/paddle/optimizer/lamb.py
+47
-24
未找到文件。
paddle/fluid/operators/optimizers/lamb_op.cc
浏览文件 @
11e78eba
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/lamb_op.h"
#include <string>
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -21,7 +23,7 @@ class LambOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Param"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Param) of LambOp should not be null."
));
...
...
@@ -53,6 +55,12 @@ class LambOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Moment2Out"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Moment2Out) of LambOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Beta1PowOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Beta1PowOut) of LambOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Beta2PowOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Beta2PowOut) of LambOp should not be null."
));
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_NE
(
...
...
@@ -108,14 +116,26 @@ class LambOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment1Out"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment2Out"
,
param_dims
);
ctx
->
SetOutputDim
(
"Beta1PowOut"
,
beta1_pow_dims
);
ctx
->
SetOutputDim
(
"Beta2PowOut"
,
beta2_pow_dims
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Param"
);
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
{
if
(
var_name
==
"Beta1Pow"
||
var_name
==
"Beta2Pow"
)
{
return
expected_kernel_type
;
}
else
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
}
};
class
LambOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -136,6 +156,10 @@ class LambOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"ParamOut"
,
"(Tensor) Output parameter."
);
AddOutput
(
"Moment1Out"
,
"(Tensor) Output first moment."
);
AddOutput
(
"Moment2Out"
,
"(Tensor) Output second moment."
);
AddOutput
(
"Beta1PowOut"
,
"(Tensor) Output beta1 power accumulator"
)
.
AsDispensable
();
AddOutput
(
"Beta2PowOut"
,
"(Tensor) Output beta2 power accumulator"
)
.
AsDispensable
();
AddAttr
<
float
>
(
"weight_decay"
,
"(float) Weight decay rate."
);
AddAttr
<
float
>
(
"beta1"
,
"(float, default 0.9) The exponential decay rate for the "
...
...
@@ -164,6 +188,10 @@ m_t &= \beta_1 m_{t - 1}+ (1 - \beta_1)g_t \\
v_t &= \beta_2 v_{t - 1} + (1 - \beta_2)g_t^2 \\
m_t &= \frac{m_t}{\beta_1^t} \\
v_t &= \frac{v_t}{\beta_2^t} \\
r_t &= \frac{m_t}{\sqrt{v_t}+\epsilon} \\
w_t &= w_{t-1} -\eta_t \frac{\left \| w_{t-1}\right \|}{\left \| r_t + \lambda w_{t-1}\right \|} (r_t + \lambda w_{t-1})
...
...
@@ -183,3 +211,15 @@ REGISTER_OP_WITHOUT_GRADIENT(lamb, ops::LambOp, ops::LambOpMaker);
REGISTER_OP_CPU_KERNEL
(
lamb
,
ops
::
LambOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LambOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
/* ========================== register checkpoint ===========================*/
REGISTER_OP_VERSION
(
lamb
)
.
AddCheckpoint
(
R"ROC(Upgrade lamb, add two new outputs [Beta1PowOut] and [Beta2PowOut].)ROC"
,
paddle
::
framework
::
compatible
::
OpVersionDesc
()
.
NewInput
(
"Beta1PowOut"
,
"The Output beta1 power accumulator. 'Beta1PowOut' is "
"dispensable."
)
.
NewInput
(
"Beta2PowOut"
,
"The Output beta2 power accumulator. 'Beta2PowOut' is "
"dispensable."
));
paddle/fluid/operators/optimizers/lamb_op.h
浏览文件 @
11e78eba
...
...
@@ -27,14 +27,81 @@ namespace operators {
namespace
scatter
=
paddle
::
operators
::
math
::
scatter
;
template
<
typename
T
>
struct
LambMomentUpdateFunctor
{
struct
LambMomentREGUpdateFunctor
{
T
weight_decay_
;
T
beta1_
;
T
beta2_
;
T
epsilon_
;
T
beta1_pow_
;
T
*
beta1_pow_out_
;
T
beta2_pow_
;
T
*
beta2_pow_out_
;
const
T
*
moment1_
;
T
*
moment1_out_
;
const
T
*
moment2_
;
T
*
moment2_out_
;
const
T
*
grad_
;
const
T
*
param_
;
T
*
trust_ratio_div_
;
LambMomentREGUpdateFunctor
(
T
weight_decay
,
T
beta1
,
T
beta2
,
T
epsilon
,
T
beta1_pow
,
T
*
beta1_pow_out
,
T
beta2_pow
,
T
*
beta2_pow_out
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
grad
,
const
T
*
param
,
T
*
trust_ratio_div
)
:
weight_decay_
(
weight_decay
),
beta1_
(
beta1
),
beta2_
(
beta2
),
epsilon_
(
epsilon
),
beta1_pow_
(
beta1_pow
),
beta1_pow_out_
(
beta1_pow_out
),
beta2_pow_
(
beta2_pow
),
beta2_pow_out_
(
beta2_pow_out
),
moment1_
(
mom1
),
moment1_out_
(
mom1_out
),
moment2_
(
mom2
),
moment2_out_
(
mom2_out
),
grad_
(
grad
),
param_
(
param
),
trust_ratio_div_
(
trust_ratio_div
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
T
g
=
grad_
[
i
];
T
mom1
=
moment1_
[
i
];
T
mom2
=
moment2_
[
i
];
T
beta1_pow
=
beta1_pow_
;
T
beta2_pow
=
beta2_pow_
;
T
p
=
param_
[
i
];
mom1
=
beta1_
*
mom1
+
(
1
-
beta1_
)
*
g
;
mom2
=
beta2_
*
mom2
+
(
1
-
beta2_
)
*
g
*
g
;
moment1_out_
[
i
]
=
mom1
;
moment2_out_
[
i
]
=
mom2
;
T
mom1_unbiased
=
mom1
/
(
1
-
beta1_pow
);
T
mom2_unbiased
=
mom2
/
(
1
-
beta2_pow
);
trust_ratio_div_
[
i
]
=
mom1_unbiased
/
(
sqrt
(
mom2_unbiased
)
+
epsilon_
)
+
weight_decay_
*
p
;
if
(
beta1_pow_out_
&&
beta2_pow_out_
)
{
beta1_pow_out_
[
0
]
=
beta1_pow
*
beta1_
;
beta2_pow_out_
[
0
]
=
beta2_pow
*
beta2_
;
}
}
};
template
<
typename
T
>
struct
LambMomentMENUpdateFunctor
{
T
weight_decay_
;
T
beta1_
;
T
beta2_
;
T
epsilon_
;
const
T
*
beta1_pow_
;
T
*
beta1_pow_out_
;
const
T
*
beta2_pow_
;
T
*
beta2_pow_out_
;
const
T
*
moment1_
;
T
*
moment1_out_
;
const
T
*
moment2_
;
...
...
@@ -43,16 +110,20 @@ struct LambMomentUpdateFunctor {
const
T
*
param_
;
T
*
trust_ratio_div_
;
LambMomentUpdateFunctor
(
T
weight_decay
,
T
beta1
,
T
beta2
,
T
epsilon
,
const
T
*
beta1_pow
,
const
T
*
beta2_pow
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
grad
,
const
T
*
param
,
T
*
trust_ratio_div
)
LambMomentMENUpdateFunctor
(
T
weight_decay
,
T
beta1
,
T
beta2
,
T
epsilon
,
const
T
*
beta1_pow
,
T
*
beta1_pow_out
,
const
T
*
beta2_pow
,
T
*
beta2_pow_out
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
grad
,
const
T
*
param
,
T
*
trust_ratio_div
)
:
weight_decay_
(
weight_decay
),
beta1_
(
beta1
),
beta2_
(
beta2
),
epsilon_
(
epsilon
),
beta1_pow_
(
beta1_pow
),
beta1_pow_out_
(
beta1_pow_out
),
beta2_pow_
(
beta2_pow
),
beta2_pow_out_
(
beta2_pow_out
),
moment1_
(
mom1
),
moment1_out_
(
mom1_out
),
moment2_
(
mom2
),
...
...
@@ -65,6 +136,8 @@ struct LambMomentUpdateFunctor {
T
g
=
grad_
[
i
];
T
mom1
=
moment1_
[
i
];
T
mom2
=
moment2_
[
i
];
T
beta1_pow
=
*
beta1_pow_
;
T
beta2_pow
=
*
beta2_pow_
;
T
p
=
param_
[
i
];
mom1
=
beta1_
*
mom1
+
(
1
-
beta1_
)
*
g
;
...
...
@@ -72,19 +145,110 @@ struct LambMomentUpdateFunctor {
moment1_out_
[
i
]
=
mom1
;
moment2_out_
[
i
]
=
mom2
;
trust_ratio_div_
[
i
]
=
mom1
/
(
sqrt
(
mom2
)
+
epsilon_
)
+
weight_decay_
*
p
;
T
mom1_unbiased
=
mom1
/
(
1
-
beta1_pow
);
T
mom2_unbiased
=
mom2
/
(
1
-
beta2_pow
);
trust_ratio_div_
[
i
]
=
mom1_unbiased
/
(
sqrt
(
mom2_unbiased
)
+
epsilon_
)
+
weight_decay_
*
p
;
if
(
beta1_pow_out_
&&
beta2_pow_out_
)
{
beta1_pow_out_
[
0
]
=
beta1_pow
*
beta1_
;
beta2_pow_out_
[
0
]
=
beta2_pow
*
beta2_
;
}
}
};
template
<
typename
T
>
struct
SparseLambMomentUpdateFunctor
{
struct
SparseLambMomentREGUpdateFunctor
{
T
weight_decay_
;
T
beta1_
;
T
beta2_
;
T
epsilon_
;
T
beta1_pow_
;
T
*
beta1_pow_out_
;
T
beta2_pow_
;
T
*
beta2_pow_out_
;
const
T
*
moment1_
;
T
*
moment1_out_
;
const
T
*
moment2_
;
T
*
moment2_out_
;
const
T
*
grad_
;
const
T
*
param_
;
T
*
trust_ratio_div_
;
const
int64_t
*
rows_
;
int64_t
row_numel_
;
int64_t
row_count_
;
SparseLambMomentREGUpdateFunctor
(
T
weight_decay
,
T
beta1
,
T
beta2
,
T
epsilon
,
T
beta1_pow
,
T
*
beta1_pow_out
,
T
beta2_pow
,
T
*
beta2_pow_out
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
grad
,
const
T
*
param
,
T
*
trust_ratio_div
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
row_count
)
:
weight_decay_
(
weight_decay
),
beta1_
(
beta1
),
beta2_
(
beta2
),
epsilon_
(
epsilon
),
beta1_pow_
(
beta1_pow
),
beta1_pow_out_
(
beta1_pow_out
),
beta2_pow_
(
beta2_pow
),
beta2_pow_out_
(
beta2_pow_out
),
moment1_
(
mom1
),
moment1_out_
(
mom1_out
),
moment2_
(
mom2
),
moment2_out_
(
mom2_out
),
grad_
(
grad
),
param_
(
param
),
trust_ratio_div_
(
trust_ratio_div
),
rows_
(
rows
),
row_numel_
(
row_numel
),
row_count_
(
row_count
)
{}
inline
HOSTDEVICE
void
update
(
size_t
i
,
T
g
)
const
{
// The following code is same as dense
T
mom1
=
moment1_
[
i
];
T
mom2
=
moment2_
[
i
];
T
beta1_pow
=
beta1_pow_
;
T
beta2_pow
=
beta2_pow_
;
T
p
=
param_
[
i
];
mom1
=
beta1_
*
mom1
+
(
1
-
beta1_
)
*
g
;
mom2
=
beta2_
*
mom2
+
(
1
-
beta2_
)
*
g
*
g
;
moment1_out_
[
i
]
=
mom1
;
moment2_out_
[
i
]
=
mom2
;
T
mom1_unbiased
=
mom1
/
(
1
-
beta1_pow
);
T
mom2_unbiased
=
mom2
/
(
1
-
beta2_pow
);
trust_ratio_div_
[
i
]
=
mom1_unbiased
/
(
sqrt
(
mom2_unbiased
)
+
epsilon_
)
+
weight_decay_
*
p
;
if
(
beta1_pow_out_
&&
beta1_pow_out_
)
{
beta1_pow_out_
[
0
]
=
beta1_pow
*
beta1_
;
beta2_pow_out_
[
0
]
=
beta2_pow
*
beta2_
;
}
}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
auto
row_idx
=
math
::
BinarySearch
<
int64_t
>
(
rows_
,
row_count_
,
i
/
row_numel_
);
T
g
=
row_idx
>=
0
?
grad_
[
row_idx
*
row_numel_
+
i
%
row_numel_
]
:
0
;
update
(
i
,
g
);
}
};
template
<
typename
T
>
struct
SparseLambMomentMENUpdateFunctor
{
T
weight_decay_
;
T
beta1_
;
T
beta2_
;
T
epsilon_
;
const
T
*
beta1_pow_
;
T
*
beta1_pow_out_
;
const
T
*
beta2_pow_
;
T
*
beta2_pow_out_
;
const
T
*
moment1_
;
T
*
moment1_out_
;
const
T
*
moment2_
;
...
...
@@ -97,18 +261,21 @@ struct SparseLambMomentUpdateFunctor {
int64_t
row_numel_
;
int64_t
row_count_
;
SparseLambMomentUpdateFunctor
(
T
weight_decay
,
T
beta1
,
T
beta2
,
T
epsilon
,
const
T
*
beta1_pow
,
const
T
*
beta2_pow
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
grad
,
const
T
*
param
,
T
*
trust_ratio_div
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
row_count
)
SparseLambMomentMENUpdateFunctor
(
T
weight_decay
,
T
beta1
,
T
beta2
,
T
epsilon
,
const
T
*
beta1_pow
,
T
*
beta1_pow_out
,
const
T
*
beta2_pow
,
T
*
beta2_pow_out
,
const
T
*
mom1
,
T
*
mom1_out
,
const
T
*
mom2
,
T
*
mom2_out
,
const
T
*
grad
,
const
T
*
param
,
T
*
trust_ratio_div
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
row_count
)
:
weight_decay_
(
weight_decay
),
beta1_
(
beta1
),
beta2_
(
beta2
),
epsilon_
(
epsilon
),
beta1_pow_
(
beta1_pow
),
beta1_pow_out_
(
beta1_pow_out
),
beta2_pow_
(
beta2_pow
),
beta2_pow_out_
(
beta2_pow_out
),
moment1_
(
mom1
),
moment1_out_
(
mom1_out
),
moment2_
(
mom2
),
...
...
@@ -124,6 +291,8 @@ struct SparseLambMomentUpdateFunctor {
// The following code is same as dense
T
mom1
=
moment1_
[
i
];
T
mom2
=
moment2_
[
i
];
T
beta1_pow
=
*
beta1_pow_
;
T
beta2_pow
=
*
beta2_pow_
;
T
p
=
param_
[
i
];
mom1
=
beta1_
*
mom1
+
(
1
-
beta1_
)
*
g
;
...
...
@@ -131,7 +300,15 @@ struct SparseLambMomentUpdateFunctor {
moment1_out_
[
i
]
=
mom1
;
moment2_out_
[
i
]
=
mom2
;
trust_ratio_div_
[
i
]
=
mom1
/
(
sqrt
(
mom2
)
+
epsilon_
)
+
weight_decay_
*
p
;
T
mom1_unbiased
=
mom1
/
(
1
-
beta1_pow
);
T
mom2_unbiased
=
mom2
/
(
1
-
beta2_pow
);
trust_ratio_div_
[
i
]
=
mom1_unbiased
/
(
sqrt
(
mom2_unbiased
)
+
epsilon_
)
+
weight_decay_
*
p
;
if
(
beta1_pow_out_
&&
beta1_pow_out_
)
{
beta1_pow_out_
[
0
]
=
beta1_pow
*
beta1_
;
beta2_pow_out_
[
0
]
=
beta2_pow
*
beta2_
;
}
}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
...
...
@@ -211,6 +388,10 @@ class LambOpKernel : public framework::OpKernel<T> {
"Output"
,
"Moment1Out"
,
"Lamb"
);
auto
&
mom2_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
),
"Output"
,
"Moment2Out"
,
"Lamb"
);
auto
&
beta1_pow_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Beta1PowOut"
),
"Output"
,
"Beta1PowOut"
,
"Lamb"
);
auto
&
beta2_pow_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Beta2PowOut"
),
"Output"
,
"Beta2PowOut"
,
"Lamb"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
param
.
numel
());
...
...
@@ -220,16 +401,37 @@ class LambOpKernel : public framework::OpKernel<T> {
// Update moments
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
*
ctx
.
Input
<
LoDTensor
>
(
"Grad"
);
LambMomentUpdateFunctor
<
T
>
moment_update_functor
(
weight_decay
,
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
grad
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
trust_ratio_div
.
template
data
<
T
>());
for_range
(
moment_update_functor
);
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
())
&&
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
LambMomentREGUpdateFunctor
<
T
>
moment_update_functor
(
weight_decay
,
beta1
,
beta2
,
epsilon
,
*
beta1_pow
.
template
data
<
T
>(),
nullptr
,
*
beta2_pow
.
template
data
<
T
>(),
nullptr
,
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
grad
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
trust_ratio_div
.
template
data
<
T
>());
for_range
(
moment_update_functor
);
beta1_pow_out
.
template
mutable_data
<
T
>(
platform
::
CPUPlace
())[
0
]
=
beta1
*
beta1_pow
.
template
data
<
T
>()[
0
];
beta2_pow_out
.
template
mutable_data
<
T
>(
platform
::
CPUPlace
())[
0
]
=
beta2
*
beta2_pow
.
template
data
<
T
>()[
0
];
}
else
{
LambMomentMENUpdateFunctor
<
T
>
moment_update_functor
(
weight_decay
,
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta1_pow_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
beta2_pow
.
template
data
<
T
>(),
beta2_pow_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
grad
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
trust_ratio_div
.
template
data
<
T
>());
for_range
(
moment_update_functor
);
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Lamb"
);
...
...
@@ -264,16 +466,37 @@ class LambOpKernel : public framework::OpKernel<T> {
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
const
int64_t
*
rows
=
grad_merge
.
rows
().
Data
(
ctx
.
GetPlace
());
auto
row_numel
=
grad_tensor
.
numel
()
/
grad_merge
.
rows
().
size
();
SparseLambMomentUpdateFunctor
<
T
>
moment_update_functor
(
weight_decay
,
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta2_pow
.
template
data
<
T
>(),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
grad_data
,
param
.
template
data
<
T
>(),
trust_ratio_div
.
template
data
<
T
>(),
rows
,
row_numel
,
grad_merge
.
rows
().
size
());
for_range
(
moment_update_functor
);
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
())
&&
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
SparseLambMomentREGUpdateFunctor
<
T
>
moment_update_functor
(
weight_decay
,
beta1
,
beta2
,
epsilon
,
*
beta1_pow
.
template
data
<
T
>(),
nullptr
,
*
beta2_pow
.
template
data
<
T
>(),
nullptr
,
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
grad_data
,
param
.
template
data
<
T
>(),
trust_ratio_div
.
template
data
<
T
>(),
rows
,
row_numel
,
grad_merge
.
rows
().
size
());
for_range
(
moment_update_functor
);
beta1_pow_out
.
template
mutable_data
<
T
>(
platform
::
CPUPlace
())[
0
]
=
beta1
*
beta1_pow
.
template
data
<
T
>()[
0
];
beta2_pow_out
.
template
mutable_data
<
T
>(
platform
::
CPUPlace
())[
0
]
=
beta2
*
beta2_pow
.
template
data
<
T
>()[
0
];
}
else
{
SparseLambMomentMENUpdateFunctor
<
T
>
moment_update_functor
(
weight_decay
,
beta1
,
beta2
,
epsilon
,
beta1_pow
.
template
data
<
T
>(),
beta1_pow_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
beta2_pow
.
template
data
<
T
>(),
beta2_pow_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom1
.
template
data
<
T
>(),
mom1_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
mom2
.
template
data
<
T
>(),
mom2_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
grad_data
,
param
.
template
data
<
T
>(),
trust_ratio_div
.
template
data
<
T
>(),
rows
,
row_numel
,
grad_merge
.
rows
().
size
());
for_range
(
moment_update_functor
);
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Variable type not supported by lamb_op. Expect LoDTensor or "
...
...
@@ -296,7 +519,6 @@ class LambOpKernel : public framework::OpKernel<T> {
auto
*
place
=
dev_ctx
.
eigen_device
();
p_norm
.
device
(
*
place
)
=
p
.
square
().
sum
().
sqrt
();
trust_ratio_div_norm
.
device
(
*
place
)
=
t
.
square
().
sum
().
sqrt
();
LambParamUpateFunctor
<
T
>
param_update_functor
(
lr
.
template
data
<
T
>(),
param
.
template
data
<
T
>(),
p_norm_t
.
template
data
<
T
>(),
trust_ratio_div
.
template
data
<
T
>(),
...
...
paddle/fluid/pybind/op_function_generator.cc
浏览文件 @
11e78eba
...
...
@@ -89,6 +89,8 @@ std::map<std::string, std::set<std::string>> op_outs_map = {
{
"generate_proposals_v2"
,
{
"RpnRois"
,
"RpnRoiProbs"
,
"RpnRoisNum"
}},
{
"momentum"
,
{
"ParamOut"
,
"VelocityOut"
}},
{
"rnn"
,
{
"DropoutState"
,
"Reserve"
,
"Out"
,
"State"
}},
{
"lamb"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
}},
};
// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
...
...
@@ -136,6 +138,8 @@ std::map<std::string, std::set<std::string>> op_passing_outs_map = {
{
"update_loss_scaling"
,
{
"Out"
,
"LossScaling"
,
"OutGoodSteps"
,
"OutBadSteps"
}},
{
"moving_average_abs_max_scale"
,
{
"OutScale"
,
"OutAccum"
,
"OutState"
}},
{
"lamb"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
}},
{
"rnn"
,
{
"DropoutState"
}},
};
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
11e78eba
...
...
@@ -2983,6 +2983,10 @@ class LambOptimizer(AdamOptimizer):
v_t &= \\beta_2 v_{t - 1} + (1 - \\beta_2)g_t^2
m_t &= \\frac{m_t}{\\beta_1^t}
v_t &= \\frac{v_t}{\\beta_2^t}
r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
...
...
@@ -3010,8 +3014,9 @@ class LambOptimizer(AdamOptimizer):
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
:ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Default None.
...
...
@@ -3036,7 +3041,6 @@ class LambOptimizer(AdamOptimizer):
"""
_moment1_acc_str
=
"moment1"
_moment2_acc_str
=
"moment2"
# these two not used in op temporarily
_beta1_pow_acc_str
=
"beta1_pow_acc"
_beta2_pow_acc_str
=
"beta2_pow_acc"
...
...
@@ -3087,6 +3091,16 @@ class LambOptimizer(AdamOptimizer):
weight_decay
=
0.0
else
:
weight_decay
=
self
.
_weight_decay
lr
=
self
.
_create_param_lr
(
param_and_grad
)
if
framework
.
in_dygraph_mode
():
_
,
_
,
_
,
_
,
_
=
core
.
ops
.
lamb
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
param_and_grad
[
0
],
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
'beta1'
,
self
.
_beta1
,
'beta2'
,
self
.
_beta2
,
'epsilon'
,
self
.
_epsilon
,
'weight_decay'
,
weight_decay
)
return
None
# create the lamb optimize op
lamb_op
=
block
.
append_op
(
...
...
@@ -3094,7 +3108,7 @@ class LambOptimizer(AdamOptimizer):
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_create_param_lr
(
param_and_grad
)
,
"LearningRate"
:
lr
,
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
beta1_pow_acc
,
...
...
@@ -3103,7 +3117,9 @@ class LambOptimizer(AdamOptimizer):
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"Moment1Out"
:
moment1
,
"Moment2Out"
:
moment2
"Moment2Out"
:
moment2
,
"Beta1PowOut"
:
beta1_pow_acc
,
"Beta2PowOut"
:
beta2_pow_acc
},
attrs
=
{
"beta1"
:
self
.
_beta1
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer_v2.py
浏览文件 @
11e78eba
...
...
@@ -23,7 +23,7 @@ import itertools
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
MomentumOptimizer
,
LarsMomentumOptimizer
,
AdagradOptimizer
,
AdamaxOptimizer
,
DpsgdOptimizer
,
DecayedAdagradOptimizer
,
AdadeltaOptimizer
,
RMSPropOptimizer
,
FtrlOptimizer
,
LambOptimizer
from
paddle.fluid.optimizer
import
MomentumOptimizer
,
LarsMomentumOptimizer
,
AdagradOptimizer
,
AdamaxOptimizer
,
DpsgdOptimizer
,
DecayedAdagradOptimizer
,
AdadeltaOptimizer
,
RMSPropOptimizer
,
FtrlOptimizer
from
paddle.fluid.optimizer
import
ModelAverage
,
DGCMomentumOptimizer
,
ExponentialMovingAverage
,
PipelineOptimizer
,
LookaheadOptimizer
,
RecomputeOptimizer
from
paddle.fluid.dygraph
import
Linear
from
paddle.fluid.dygraph.base
import
to_variable
...
...
@@ -702,14 +702,14 @@ def exclude_fn(param):
class
TestImperativeLambOptimizer
(
TestImperativeOptimizerBase
):
def
get_optimizer_dygraph
(
self
,
parameter_list
):
optimizer
=
LambOptimizer
(
optimizer
=
paddle
.
optimizer
.
Lamb
(
learning_rate
=
0.002
,
exclude_from_weight_decay_fn
=
exclude_fn
,
parameter
_list
=
parameter_list
)
parameter
s
=
parameter_list
)
return
optimizer
def
get_optimizer
(
self
):
optimizer
=
LambOptimizer
(
optimizer
=
paddle
.
optimizer
.
Lamb
(
learning_rate
=
0.002
,
exclude_from_weight_decay_fn
=
exclude_fn
)
return
optimizer
...
...
python/paddle/fluid/tests/unittests/test_lamb_op.py
浏览文件 @
11e78eba
...
...
@@ -17,9 +17,13 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
paddle
.
enable_static
()
class
TestLambOp1
(
OpTest
):
def
set_attrs
(
self
):
...
...
@@ -41,8 +45,8 @@ class TestLambOp1(OpTest):
learning_rate
=
0.001
self
.
set_attrs
()
beta1_pow
=
self
.
attrs
[
'beta1'
]
**
10
beta2_pow
=
self
.
attrs
[
'beta2'
]
**
10
beta1_pow
=
self
.
attrs
[
'beta1'
]
beta2_pow
=
self
.
attrs
[
'beta2'
]
self
.
inputs
=
{
'Param'
:
param
,
...
...
@@ -55,13 +59,15 @@ class TestLambOp1(OpTest):
}
param_out
,
moment1_out
,
\
moment2
_out
=
lamb_step
(
self
.
inputs
,
self
.
attrs
)
param_out
,
moment1_out
,
moment2_out
,
\
beta1_pow_out
,
beta2_pow
_out
=
lamb_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
'ParamOut'
:
param_out
,
'Beta1PowOut'
:
beta1_pow_out
,
'Beta2PowOut'
:
beta2_pow_out
}
def
test_check_output
(
self
):
...
...
@@ -89,14 +95,16 @@ class TestLambOpMultipleSteps(TestLambOp1):
self
.
num_steps
=
10
def
test_check_output
(
self
):
for
_
in
range
(
self
.
num_steps
):
param_out
,
moment1_out
,
\
moment2
_out
=
lamb_step
(
self
.
inputs
,
self
.
attrs
)
for
i
in
range
(
self
.
num_steps
):
param_out
,
moment1_out
,
moment2_out
,
\
beta1_pow_out
,
beta2_pow
_out
=
lamb_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
'ParamOut'
:
param_out
,
'Beta1PowOut'
:
beta1_pow_out
,
'Beta2PowOut'
:
beta2_pow_out
}
# Verify output for this step
...
...
@@ -108,8 +116,8 @@ class TestLambOpMultipleSteps(TestLambOp1):
self
.
inputs
[
'Moment2'
]
=
moment2_out
# Update powers of Beta1 and Beta2 for next time step
self
.
inputs
[
'Beta1Pow'
]
*=
self
.
attrs
[
'beta1'
]
self
.
inputs
[
'Beta2Pow'
]
*=
self
.
attrs
[
'beta1'
]
self
.
inputs
[
'Beta1Pow'
]
=
beta1_pow_out
self
.
inputs
[
'Beta2Pow'
]
=
beta2_pow_out
# Randomize gradient for next step
self
.
inputs
[
'Grad'
]
=
np
.
random
.
uniform
(
...
...
@@ -140,14 +148,21 @@ def lamb_step(inputs, attributes):
moment1_out
=
beta1
*
moment1
+
(
1
-
beta1
)
*
grad
moment2_out
=
beta2
*
moment2
+
(
1
-
beta2
)
*
np
.
square
(
grad
)
moment1_unbiased
=
moment1_out
/
(
1
-
beta1_pow
)
moment2_unbiased
=
moment2_out
/
(
1
-
beta2_pow
)
r_1
=
np
.
linalg
.
norm
(
param
)
r_2
=
np
.
linalg
.
norm
(
moment1_
out
/
(
np
.
sqrt
(
moment2_out
)
+
epsilon
)
+
weight_decay
*
param
)
r_2
=
np
.
linalg
.
norm
(
moment1_
unbiased
/
(
np
.
sqrt
(
moment2_unbiased
)
+
epsilon
)
+
weight_decay
*
param
)
lr_t
=
lr
*
r_1
/
r_2
param_out
=
param
-
lr_t
*
(
moment1_out
/
(
np
.
sqrt
(
moment2_out
)
+
epsilon
)
+
weight_decay
*
param
)
return
param_out
,
moment1_out
,
moment2_out
param_out
=
param
-
lr_t
*
(
moment1_unbiased
/
(
np
.
sqrt
(
moment2_unbiased
)
+
epsilon
)
+
weight_decay
*
param
)
beta1_pow_out
=
beta1_pow
*
beta1
beta2_pow_out
=
beta2_pow
*
beta2
return
param_out
,
moment1_out
,
moment2_out
,
beta1_pow_out
,
beta2_pow_out
def
lamb_step_sparse
(
inputs
,
attributes
,
height
,
rows
,
row_numel
,
np_grad
):
...
...
@@ -174,6 +189,8 @@ def lamb_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
moment1_out
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
moment2_out
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
param_out
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
moment1_unbiased
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
moment2_unbiased
=
np
.
zeros
(
shape
=
[
height
,
row_numel
])
def
update_mom
(
row_id
,
update_value
):
moment1_out
[
row_id
]
=
beta1
*
moment1
[
row_id
]
+
(
1
-
beta1
...
...
@@ -202,8 +219,10 @@ def lamb_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
update_mom
(
row_id
,
update_value
)
update_param
()
beta1_pow_out
=
beta1_pow
*
beta1
beta2_pow_out
=
beta2_pow
*
beta2
return
param_out
,
moment1_out
,
moment2_out
return
param_out
,
moment1_out
,
moment2_out
,
beta1_pow_out
,
beta2_pow_out
class
TestSparseLambOp
(
unittest
.
TestCase
):
...
...
@@ -221,8 +240,8 @@ class TestSparseLambOp(unittest.TestCase):
"Param"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
"Moment1"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
"Moment2"
:
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1
**
10
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2
**
10
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2
]).
astype
(
"float32"
),
"LearningRate"
:
np
.
full
((
1
),
2.0
).
astype
(
"float32"
)
}
self
.
init_output
=
np
.
full
((
height
,
row_numel
),
0.0
).
astype
(
"float32"
)
...
...
@@ -245,12 +264,14 @@ class TestSparseLambOp(unittest.TestCase):
self
.
sparse_inputs
=
[
"Grad"
]
param_out
,
mom1
,
mom2
=
lamb_step_sparse
(
param_out
,
mom1
,
mom2
,
beta1_pow_out
,
beta2_pow_out
=
lamb_step_sparse
(
self
.
dense_inputs
,
self
.
attrs
,
height
,
rows
,
row_numel
,
np_array
)
self
.
outputs
=
{
"ParamOut"
:
param_out
,
"Moment1Out"
:
mom1
,
"Moment2Out"
:
mom2
"Moment2Out"
:
mom2
,
'Beta1PowOut'
:
beta1_pow_out
,
'Beta2PowOut'
:
beta2_pow_out
}
def
check_with_place
(
self
,
place
):
...
...
python/paddle/fluid/tests/unittests/test_lambv2_op.py
浏览文件 @
11e78eba
...
...
@@ -19,34 +19,140 @@ import numpy as np
from
op_test
import
OpTest
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
class
LAMBOptimizer
(
paddle
.
optimizer
.
Lamb
):
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
assert
isinstance
(
block
,
fluid
.
framework
.
Block
)
block
.
program
.
_use_lamb
=
True
m
=
moment1
=
self
.
_get_accumulator
(
self
.
_moment1_acc_str
,
param_and_grad
[
0
])
v
=
self
.
_get_accumulator
(
self
.
_moment2_acc_str
,
param_and_grad
[
0
])
beta_1_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta1_pow_acc_str
,
param_and_grad
[
0
])
beta_2_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta2_pow_acc_str
,
param_and_grad
[
0
])
beta_1
=
layers
.
fill_constant
(
dtype
=
'float32'
,
shape
=
[
1
],
value
=
self
.
_beta1
,
name
=
'lamb_beta_1'
)
beta_2
=
layers
.
fill_constant
(
dtype
=
'float32'
,
shape
=
[
1
],
value
=
self
.
_beta2
,
name
=
'lamb_beta_2'
)
epsilon
=
layers
.
fill_constant
(
dtype
=
'float32'
,
shape
=
[
1
],
value
=
self
.
_epsilon
,
name
=
'epsilon'
)
one
=
paddle
.
ones
(
shape
=
[
1
]).
astype
(
'float32'
)
zero
=
paddle
.
zeros
(
shape
=
[
1
]).
astype
(
'float32'
)
next_m
=
paddle
.
multiply
(
m
,
beta_1
)
+
paddle
.
multiply
(
param_and_grad
[
1
],
one
-
beta_1
)
next_v
=
paddle
.
multiply
(
v
,
beta_2
)
+
paddle
.
multiply
(
paddle
.
pow
(
param_and_grad
[
1
],
2
),
one
-
beta_2
)
beta1_correction
=
one
-
beta_1_pow_acc
beta2_correction
=
one
-
beta_2_pow_acc
next_m_unbiased
=
next_m
/
beta1_correction
next_v_unbiased
=
next_v
/
beta2_correction
update
=
next_m_unbiased
/
(
paddle
.
sqrt
(
next_v_unbiased
)
+
epsilon
)
if
self
.
_exclude_from_weight_decay_fn
is
not
None
and
self
.
_exclude_from_weight_decay_fn
(
param_and_grad
[
0
]):
self
.
_lamb_weight_decay
=
0.0
update
+=
self
.
_lamb_weight_decay
*
param_and_grad
[
0
]
w_norm
=
paddle
.
norm
(
param_and_grad
[
0
],
p
=
2
)
g_norm
=
paddle
.
norm
(
update
,
p
=
2
)
learning_rate
=
self
.
_create_param_lr
(
param_and_grad
)
ratio
=
paddle
.
where
(
paddle
.
greater_than
(
w_norm
,
zero
),
paddle
.
where
(
paddle
.
greater_than
(
g_norm
,
zero
),
(
w_norm
/
g_norm
),
one
),
one
)
update_with_lr
=
ratio
*
learning_rate
*
update
next_param
=
param_and_grad
[
0
]
-
update_with_lr
beta_1_pow_acc
*=
beta_1
beta_2_pow_acc
*=
beta_2
paddle
.
assign
(
next_m
,
m
)
paddle
.
assign
(
next_v
,
v
)
paddle
.
assign
(
next_param
,
param_and_grad
[
0
])
return
None
class
TestLambOpV2
(
unittest
.
TestCase
):
def
test_lamb_op
(
self
):
shape
=
[
2
,
4
,
8
,
8
]
data
=
paddle
.
to_tensor
(
np
.
random
.
random
(
size
=
shape
).
astype
(
"float32"
))
conv
=
paddle
.
nn
.
Conv2D
(
4
,
6
,
(
3
,
3
))
data
=
conv
(
data
)
loss
=
paddle
.
mean
(
data
)
opt
=
paddle
.
optimizer
.
Lamb
(
learning_rate
=
1e-5
,
epsilon
=
1e-8
,
parameters
=
conv
.
parameters
())
loss
.
backward
()
opt
.
minimize
(
loss
)
assert
loss
.
numpy
()
is
not
None
class
TestLambOpWithCombinedOp
(
unittest
.
TestCase
):
def
test_lamb_op_with_multi_steps
(
self
):
paddle
.
enable_static
()
def
_build_static_model
(
main
,
startup
,
seed
=
100
):
with
fluid
.
program_guard
(
main
,
startup
):
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
x
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
[
13
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'Y'
,
shape
=
[
1
],
dtype
=
'float32'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
)
loss
=
fluid
.
layers
.
square_error_cost
(
input
=
prediction
,
label
=
y
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
place
=
fluid
.
CPUPlace
()
shape
=
[
2
,
3
,
8
,
8
]
exe
=
fluid
.
Executor
(
place
)
train_prog
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup
):
with
fluid
.
unique_name
.
guard
():
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
shape
)
conv
=
fluid
.
layers
.
conv2d
(
data
,
8
,
3
)
loss
=
fluid
.
layers
.
reduce_mean
(
conv
)
beta1
=
0.85
beta2
=
0.95
betas
=
[
beta1
,
beta2
]
opt
=
paddle
.
optimizer
.
Lamb
(
learning_rate
=
1e-5
,
beta1
=
beta1
,
beta2
=
beta2
,
epsilon
=
1e-8
)
opt
.
minimize
(
loss
)
exe
.
run
(
startup
)
data_np
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
rets
=
exe
.
run
(
train_prog
,
feed
=
{
"data"
:
data_np
},
fetch_list
=
[
loss
])
assert
rets
[
0
]
is
not
None
num_steps
=
10
for
i
in
range
(
num_steps
):
feed_x
=
np
.
random
.
random
(
size
=
(
10
,
13
)).
astype
(
'float32'
)
feed_y
=
np
.
random
.
random
(
size
=
(
10
,
1
)).
astype
(
'float32'
)
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
avg_loss
=
_build_static_model
(
main_program
,
startup_program
)
lamb_kernel
=
paddle
.
optimizer
.
Lamb
(
learning_rate
=
0.2
)
lamb_kernel
.
minimize
(
avg_loss
)
executor
=
fluid
.
Executor
(
place
)
executor
.
run
(
startup_program
)
output
=
executor
.
run
(
program
=
main_program
,
feed
=
{
'X'
:
feed_x
,
'Y'
:
feed_y
},
fetch_list
=
[
avg_loss
.
name
])
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
_build_static_model
(
main
,
startup
)
lamb
=
LAMBOptimizer
(
learning_rate
=
0.2
)
lamb
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
out
=
exe
.
run
(
program
=
main
,
feed
=
{
'X'
:
feed_x
,
'Y'
:
feed_y
},
fetch_list
=
[
loss
.
name
])
self
.
assertTrue
(
np
.
allclose
(
out
,
output
))
if
__name__
==
"__main__"
:
...
...
python/paddle/optimizer/lamb.py
浏览文件 @
11e78eba
...
...
@@ -37,6 +37,10 @@ class Lamb(Optimizer):
v_t &= \\beta_2 v_{t - 1} + (1 - \\beta_2)g_t^2
m_t &= \\frac{m_t}{\\beta_1^t}
v_t &= \\frac{v_t}{\\beta_2^t}
r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
...
...
@@ -59,8 +63,9 @@ class Lamb(Optimizer):
The default value is None in static mode, at this time all parameters will be updated.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
:ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
name(str|None): For detailed information, please refer to
:ref:`api_guide_Name` . Usually name is no need to set and None by default.
Examples:
...
...
@@ -81,7 +86,6 @@ class Lamb(Optimizer):
"""
_moment1_acc_str
=
"moment1"
_moment2_acc_str
=
"moment2"
# these two not used in op temporarily
_beta1_pow_acc_str
=
"beta1_pow_acc"
_beta2_pow_acc_str
=
"beta2_pow_acc"
...
...
@@ -93,6 +97,7 @@ class Lamb(Optimizer):
epsilon
=
1e-6
,
parameters
=
None
,
grad_clip
=
None
,
exclude_from_weight_decay_fn
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
beta1
is
not
None
...
...
@@ -109,6 +114,7 @@ class Lamb(Optimizer):
self
.
_beta2
=
beta2
self
.
_epsilon
=
epsilon
self
.
_lamb_weight_decay
=
lamb_weight_decay
self
.
_exclude_from_weight_decay_fn
=
exclude_from_weight_decay_fn
def
_create_accumulators
(
self
,
block
,
parameters
):
assert
isinstance
(
block
,
framework
.
Block
)
...
...
@@ -145,34 +151,51 @@ class Lamb(Optimizer):
beta2_pow_acc
=
self
.
_get_accumulator
(
self
.
_beta2_pow_acc_str
,
param_and_grad
[
0
])
if
param_and_grad
[
0
].
need_clip
:
if
self
.
_exclude_from_weight_decay_fn
is
not
None
\
and
self
.
_exclude_from_weight_decay_fn
(
param_and_grad
[
0
]):
weight_decay
=
0.0
else
:
weight_decay
=
self
.
_lamb_weight_decay
lr
=
self
.
_create_param_lr
(
param_and_grad
)
if
framework
.
in_dygraph_mode
():
_
,
_
,
_
,
_
,
_
=
core
.
ops
.
lamb
(
param_and_grad
[
0
],
param_and_grad
[
1
],
lr
,
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
param_and_grad
[
0
],
moment1
,
moment2
,
beta1_pow_acc
,
beta2_pow_acc
,
'beta1'
,
self
.
_beta1
,
'beta2'
,
self
.
_beta2
,
'epsilon'
,
self
.
_epsilon
,
'weight_decay'
,
weight_decay
)
return
None
# create the lamb optimize op
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
lr
,
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
beta1_pow_acc
,
"Beta2Pow"
:
beta2_pow_acc
}
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"Moment1Out"
:
moment1
,
"Moment2Out"
:
moment2
,
"Beta1PowOut"
:
beta1_pow_acc
,
"Beta2PowOut"
:
beta2_pow_acc
}
attrs
=
{
"beta1"
:
self
.
_beta1
,
"beta2"
:
self
.
_beta2
,
"epsilon"
:
self
.
_epsilon
,
"weight_decay"
:
weight_decay
}
lamb_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_create_param_lr
(
param_and_grad
),
"Moment1"
:
moment1
,
"Moment2"
:
moment2
,
"Beta1Pow"
:
beta1_pow_acc
,
"Beta2Pow"
:
beta2_pow_acc
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"Moment1Out"
:
moment1
,
"Moment2Out"
:
moment2
},
attrs
=
{
"beta1"
:
self
.
_beta1
,
"beta2"
:
self
.
_beta2
,
"epsilon"
:
self
.
_epsilon
,
"weight_decay"
:
weight_decay
},
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
stop_gradient
=
True
)
return
lamb_op
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录