optimizer.py 213.5 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import logging
19
from collections import defaultdict
20

Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
23

24 25
from . import framework
from . import layers
26
from . import unique_name
27
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
28
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
29 30 31
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
32
from .layers import ops
33
from .regularizer import append_regularization_ops
34
from .dygraph import base as imperative_base
35
from .dygraph import no_grad
36
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
37 38 39
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
40
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
41
from .. import compat as cpt
42

43
__all__ = [
44 45 46 47
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
48 49 50 51
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer',
    'ExponentialMovingAverage', 'PipelineOptimizer', 'LookaheadOptimizer',
    'RecomputeOptimizer'
52
]
Q
Qiao Longfei 已提交
53 54 55 56 57 58


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
59 60
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
61 62
    """

63
    @imperative_base.no_grad
64 65 66 67
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
68
                 grad_clip=None,
69
                 name=None):
H
hong 已提交
70 71
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
72
        self._name = name
L
lujun 已提交
73
        if framework.in_dygraph_mode():
M
minqiyang 已提交
74 75 76 77 78
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
79
            if self._parameter_list is None:
80 81 82
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
83 84 85 86 87 88 89 90
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
91 92 93 94 95 96 97
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))

98 99 100 101 102
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
103
        self.regularization = regularization
104
        self._grad_clip = grad_clip
105
        self._learning_rate = learning_rate
D
dzhwinter 已提交
106 107
        # the learning rate type should be inferenced from loss
        self._dtype = None
108
        # each program should have a independent learning rate
109
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
110
        self._learning_rate_map = dict()
111
        if isinstance(self._learning_rate, framework.Variable):
112 113
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
114 115 116 117 118
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
119
        self.helper = None
120
        self._opti_name_list = []
H
hong 已提交
121
        self._accumulators_holder = {}
122
        self._param_device_map = dict()
H
hong 已提交
123 124 125 126

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
127 128
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
129 130 131

        Args: None
        Return:
T
tianshuo78520a 已提交
132
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
133 134 135 136 137
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
138 139 140 141 142 143

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
144 145 146 147 148 149 150 151

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
        if isinstance(self._learning_rate, LearningRateDecay):
152 153 154 155
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
156 157 158
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

159 160
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
161

162
                state_dict['global_step'] = var_temp
H
hong 已提交
163 164 165 166 167
        return state_dict

    @framework.dygraph_only
    def set_dict(self, state_dict):
        '''
T
tianshuo78520a 已提交
168
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
169 170 171 172 173 174 175 176

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
177

H
hong 已提交
178
                with fluid.dygraph.guard():
179
                    emb = fluid.dygraph.Embedding([10, 10])
180

H
hong 已提交
181
                    state_dict = emb.state_dict()
182
                    fluid.save_dygraph(state_dict, "paddle_dy")
183

184 185
                    adam = fluid.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), 
                                                parameter_list=emb.parameters())
H
hong 已提交
186
                    state_dict = adam.state_dict()
187
                    fluid.save_dygraph(state_dict, "paddle_dy")
188

H
hong 已提交
189
                    para_state_dict, opti_state_dict = fluid.load_dygraph( "paddle_dy")
190

191
                    adam.set_dict(opti_state_dict)
H
hong 已提交
192 193 194 195

        '''

        if isinstance(self._learning_rate, LearningRateDecay):
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
218 219 220 221 222 223

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
224
                var = var_tmp.value()
H
hong 已提交
225 226 227 228 229 230 231 232
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
233
                    load_para_np = load_para.numpy()
H
hong 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
249

250 251
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
252

Q
Qiao Longfei 已提交
253
    def _create_global_learning_rate(self):
254 255 256
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
257 258 259 260 261 262 263 264 265 266 267 268
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
269
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
270
            elif isinstance(self._learning_rate, LearningRateDecay):
271 272 273
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
274
                raise TypeError(
275 276
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
277
        else:
278 279 280 281
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
282 283 284 285 286 287
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
288

289 290 291 292 293 294 295 296
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
297

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

375 376 377
    @framework.dygraph_only
    def current_step_lr(self):
        """
378
        :api_attr: imperative
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
424
        if isinstance(current_lr, framework.Variable):
425 426 427 428
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
429 430 431
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
432 433 434 435 436 437 438
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
439
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
440 441 442 443
        """
        get global decayed learning rate
        :return:
        """
444 445
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
446
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
447

Q
Qiao Longfei 已提交
448 449 450 451 452
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

453 454 455 456
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
457 458
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
459
        else:
W
Wu Yi 已提交
460
            if param_lr == 1.0:
Y
yuyang18 已提交
461
                return self._global_learning_rate()
W
Wu Yi 已提交
462
            else:
X
Xin Pan 已提交
463 464 465
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
466
                    return self._global_learning_rate() * param_lr
467 468 469 470 471 472 473

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
474
        """
475 476
        pass

477
    def _finish_update(self, block, parameters_and_grads):
478 479 480 481 482 483 484 485
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
486
            None
487 488 489
        """
        pass

490 491 492 493 494
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
495
                         shape=None,
496
                         type=None,
497
                         device=None):
498 499 500 501 502 503 504 505 506
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
507 508
        if self._name is not None:
            name = self._name + "_" + name
509 510
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
511
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
512
                return self._accumulators[name][param.name]
513
            raise Exception("Accumulator {} already exists for parameter {}".
514
                            format(name, param.name))
515 516
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
517
        assert isinstance(self.helper, LayerHelper)
518 519 520 521 522

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
523
        var = self.helper.create_global_variable(
524
            name=var_name,
Q
Qiao Longfei 已提交
525
            persistable=True,
F
fengjiayi 已提交
526
            dtype=dtype or param.dtype,
527
            type=param.type if type is None else type,
H
hong 已提交
528 529
            shape=shape,
            belong_to_optimizer=True)
530 531 532 533 534
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
535 536 537 538 539 540 541

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
542
        self._accumulators[name][param.name] = var
543
        return var
544 545 546 547 548 549 550 551 552 553 554

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
555 556
        if self._name is not None:
            name = self._name + "_" + name
557 558 559 560 561 562
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

563 564 565 566 567 568 569 570 571 572 573 574
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
575
                        break
576 577 578 579 580 581 582

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

583
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
584 585 586
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
587
          parameters_and_grads(list(tuple(Variable, Variable))):
588
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
589 590

        Returns:
591
          return_op_list: a list of operators that will complete one step of
592 593 594
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
595
        """
596 597 598 599 600
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
601
        # for parameters and extend _finish_update method to add custom ops.
602

603
        # Allways called under program_guard use global block as loss block
604 605 606
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

607
        global_block = framework.default_main_program().global_block()
608 609 610 611 612 613 614 615 616
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
617
        self.helper = LayerHelper(self.__class__.__name__)
618
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
619
        self._create_accumulators(
620
            target_block,
C
chengduo 已提交
621
            [p[0] for p in parameters_and_grads if p[0].trainable])
622 623
        self._create_global_learning_rate()

M
minqiyang 已提交
624
        if framework.in_dygraph_mode():
625 626 627
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
628 629
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
630 631 632 633 634 635 636
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
637 638 639 640 641
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
642 643 644

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
645
        self._finish_update(target_block, parameters_and_grads)
646

647 648
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
649 650

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
651 652 653 654 655 656 657 658 659
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
660 661
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
677 678 679 680 681 682 683 684 685 686 687 688 689
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
690 691
        return new_param_grads, (table_param, table_grad), sgd_op

692 693 694
    def _append_dgc_ops(self, param_and_grad):
        pass

695 696 697 698 699 700 701
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
702
        The first part of ``minimize``, do auto-diff to append backward operations for
703 704 705
        the current program.

        Args:
706 707 708 709
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
710
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
711 712
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
713
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
714 715 716
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
717

718
        Return:
719 720
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
721

722
        Examples:
723
            See examples in ``apply_gradients``.
724
        """
725
        act_no_grad_set = None
L
Leo Chen 已提交
726
        if framework.in_dygraph_mode():
727
            pass
L
Leo Chen 已提交
728 729
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
730

C
chengduo 已提交
731
        self._dtype = loss.dtype
L
lujun 已提交
732
        if framework.in_dygraph_mode():
C
chengduo 已提交
733
            params_grads = []
734
            for param in self._parameter_list:
C
chengduo 已提交
735 736
                if not param.trainable:
                    continue
737
                if param._grad_ivar() is not None:
C
chengduo 已提交
738
                    # create gradient variable
739
                    grad_var = param._grad_ivar()
C
chengduo 已提交
740
                    params_grads.append((param, grad_var))
741
        else:
C
chengduo 已提交
742 743 744 745 746
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
747 748 749 750
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
751 752
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
753 754
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
755
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
756 757 758 759
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads
760 761 762 763 764 765 766 767

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
768

769 770
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
771

772 773 774
        Examples:
            .. code-block:: python

775
                import paddle.fluid as fluid
776 777 778 779 780 781 782
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
783

784 785 786 787 788
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

789
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
790 791 792 793
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
794 795

        # Add regularization if any
796 797
        params_grads = append_regularization_ops(
            params_grads, self.regularization, self._param_device_map)
798 799 800 801 802 803 804 805

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

C
chengduo 已提交
806 807 808 809 810 811 812 813 814 815 816 817
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
818
        if framework.in_dygraph_mode():
C
chengduo 已提交
819 820
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
821 822
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
823 824
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
825 826 827 828 829 830 831
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
832
    def _get_no_grad_set(self, loss, no_grad_set=None):
833
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
834 835 836 837 838 839 840 841
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

873
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
874 875
    def minimize(self,
                 loss,
876
                 startup_program=None,
Q
Qiao Longfei 已提交
877
                 parameter_list=None,
878
                 no_grad_set=None):
879
        """
880
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
881

882
        Args:
883 884 885 886
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
887
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
888 889
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
890
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
891
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
892

893
        Returns:
894 895 896
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
897 898 899
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
900 901 902

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
903
        """
C
chengduo 已提交
904
        assert isinstance(loss, Variable), "The loss should be an Variable."
905

906 907
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
C
chengduo 已提交
908 909 910 911 912
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
913

C
chengduo 已提交
914 915
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
916

Q
Qiao Longfei 已提交
917
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
918 919 920


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
921 922 923 924 925 926 927
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

928 929 930
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
931
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
932 933
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
934 935 936 937 938
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
939 940 941 942
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
943 944
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
945 946 947 948

    Examples:
        .. code-block:: python

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
974 975
    """

976 977 978 979
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
980
                 grad_clip=None,
981
                 name=None):
Q
Qiao Longfei 已提交
982
        assert learning_rate is not None
Q
Qiao Longfei 已提交
983
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
984
            learning_rate=learning_rate,
985
            parameter_list=parameter_list,
X
Xin Pan 已提交
986
            regularization=regularization,
987
            grad_clip=grad_clip,
X
Xin Pan 已提交
988
            name=name)
Q
Qiao Longfei 已提交
989 990
        self.type = "sgd"

991
    @no_grad
992
    def _append_optimize_op(self, block, param_and_grad):
993
        lr = self._create_param_lr(param_and_grad)
994
        if framework.in_dygraph_mode():
995 996 997
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
998

999
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1000 1001 1002 1003 1004 1005
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1006
                "LearningRate": lr
Q
Qiao Longfei 已提交
1007
            },
M
minqiyang 已提交
1008 1009
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1010 1011

        return sgd_op
1012 1013 1014


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1029
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1030 1031 1032

        & else:

Q
qiaolongfei 已提交
1033
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1034

1035 1036 1037 1038
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1039
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1040 1041
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1042
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1043 1044 1045 1046 1047
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1048 1049 1050 1051
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1052 1053
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1054 1055 1056 1057

    Examples:
        .. code-block:: python

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1083 1084 1085
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1086 1087 1088
    def __init__(self,
                 learning_rate,
                 momentum,
1089
                 parameter_list=None,
X
Xin Pan 已提交
1090 1091
                 use_nesterov=False,
                 regularization=None,
1092
                 grad_clip=None,
X
Xin Pan 已提交
1093
                 name=None):
1094 1095
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1096
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1097
            learning_rate=learning_rate,
1098
            parameter_list=parameter_list,
X
Xin Pan 已提交
1099
            regularization=regularization,
1100
            grad_clip=grad_clip,
X
Xin Pan 已提交
1101
            name=name)
1102 1103
        self.type = "momentum"
        self._momentum = momentum
1104
        self._use_nesterov = bool(use_nesterov)
1105 1106 1107 1108 1109

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1110
            self._add_accumulator(self._velocity_acc_str, p)
1111 1112 1113 1114 1115 1116

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1117 1118 1119 1120 1121 1122 1123 1124
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1125

1126
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1127 1128 1129 1130
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1131
            "LearningRate": [lr]
1132 1133 1134 1135 1136 1137
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1138 1139 1140
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1141 1142 1143
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1144
            stop_gradient=True)
1145 1146

        return momentum_op
1147 1148


1149
class DGCMomentumOptimizer(Optimizer):
1150
    """
1151
	:api_attr: Static Graph
S
swtkiwi 已提交
1152

1153
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1154

G
gongweibao 已提交
1155
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1156 1157
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1158
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1159 1160 1161

    Eventually, these gradients become large enough to be transmitted.

1162
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1163

G
gongweibao 已提交
1164
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1165 1166 1167 1168

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1169

1170 1171
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1172

1173
        2. Call momentum to optimize the cost.
1174 1175

    Args:
1176 1177
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1178
        momentum (float): Momentum factor.
G
gongweibao 已提交
1179
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1180 1181 1182 1183 1184 1185 1186
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1187
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1188 1189
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1190
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1191 1192 1193 1194 1195
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1196 1197 1198
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1199 1200
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1201 1202 1203 1204

    Examples:
        .. code-block:: python

1205
            import paddle.fluid as fluid
1206
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1207 1208 1209 1210 1211
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1212 1213

    """
1214 1215
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1216 1217 1218 1219 1220 1221 1222

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1223
                 parameter_list=None,
1224 1225 1226
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1227
                 grad_clip=None,
1228
                 name=None):
Z
zhongpu 已提交
1229 1230
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1231 1232 1233 1234

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1235 1236 1237 1238
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1239
            parameter_list=parameter_list,
1240
            regularization=regularization,
1241
            grad_clip=grad_clip,
1242 1243 1244 1245
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1246

1247
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1248
        self._rampup_begin_step = rampup_begin_step
1249 1250
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1251

1252
        self._rampup_begin_step_var = None
1253
        self._global_step_var = None
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1266 1267

            self._num_trainers = num_trainers
1268
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1269

1270 1271
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1272

1273 1274 1275
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1276

1277 1278
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1279
            from .regularizer import L1Decay, L2Decay
1280 1281 1282 1283
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1284 1285
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1286
        return regular_type, regular_coeff
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1314 1315

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1316 1317 1318
            type = "momentum"
        else:
            type = "dgc_momentum"
1319 1320 1321 1322 1323
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1324
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1325 1326 1327

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1328 1329 1330 1331
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1332 1333 1334
            stop_gradient=True)
        return dgc_momentum_op

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1367 1368 1369 1370 1371 1372
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1373
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1374

1375 1376 1377
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1378 1379 1380 1381 1382
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1383
            name=core.dgc.kDGCRampUpBeginStepName(),
1384 1385 1386
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1387 1388
        self.helper = LayerHelper(self.__class__.__name__)

1389
        for param_var, grad_var in param_and_grads:
1390 1391 1392
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1393
            if not self._is_use_dgc(param_var, grad_var):
1394 1395
                continue

1396
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1397 1398 1399 1400 1401

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1402
                name=param_var.name + core.dgc.kDGCKName(),
1403 1404 1405 1406 1407 1408 1409
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1410
                name=param_var.name + core.dgc.kDGCEncodedName(),
1411 1412 1413
                value=0.0,
                force_cpu=False)

1414 1415 1416 1417 1418 1419 1420 1421
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1441 1442
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1443
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1444
                         encoded_var, gather_var)
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1460 1461
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1462 1463 1464 1465 1466

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1467
            type="dgc_clip_by_norm",
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1480
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1481 1482

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1483
                encoded_var, gather_var):
1484 1485
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1486

1487 1488 1489 1490 1491 1492 1493
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1494 1495 1496 1497 1498 1499
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1500
                "Param": param_var,
1501 1502
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1503 1504 1505 1506 1507 1508
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1509 1510
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1511 1512 1513 1514 1515 1516
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1517
                "rampup_step": float(self._rampup_step),
1518 1519
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1520 1521 1522 1523 1524 1525 1526 1527
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1528
    @imperative_base.no_grad
1529 1530 1531 1532 1533 1534 1535
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1536
        # DGC clip and regularization in optimizer.backward
1537 1538 1539 1540 1541 1542
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1543
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1544 1545 1546 1547 1548
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

1579 1580 1581 1582 1583 1584
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1585
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1586 1587
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1588 1589 1590 1591 1592
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1593 1594 1595 1596
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1597 1598
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1599 1600 1601 1602

    Examples:
        .. code-block:: python

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1619 1620 1621 1622 1623 1624 1625 1626
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1627
                 parameter_list=None,
1628
                 regularization=None,
1629
                 grad_clip=None,
1630 1631 1632 1633 1634
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1635
            parameter_list=parameter_list,
1636
            regularization=regularization,
1637
            grad_clip=grad_clip,
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
1672 1673
            },
            stop_gradient=True)
1674 1675 1676 1677

        return momentum_op


1678
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1679
    """
1680 1681
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1682

1683
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1684 1685 1686 1687 1688 1689 1690

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1691 1692 1693 1694 1695 1696
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1697 1698 1699
    for numerical stability to avoid the division by zero error.

    Args:
1700 1701 1702 1703
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
1704
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1705 1706
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1707 1708 1709 1710 1711
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1712 1713 1714 1715
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1716 1717 1718 1719 1720
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1721 1722 1723 1724

    Examples:
        .. code-block:: python

1725
            import numpy as np
1726
            import paddle.fluid as fluid
1727 1728

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1729
            inp = fluid.data(name="inp", shape=[2, 2])
1730 1731
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1732
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1733 1734 1735 1736 1737 1738 1739
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1740 1741 1742
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1743 1744 1745
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1746
                 parameter_list=None,
X
Xin Pan 已提交
1747
                 regularization=None,
1748
                 grad_clip=None,
1749
                 name=None,
X
xuezhong 已提交
1750
                 initial_accumulator_value=0.0):
1751 1752
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1753
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1754
            learning_rate=learning_rate,
1755
            parameter_list=parameter_list,
X
Xin Pan 已提交
1756
            regularization=regularization,
1757
            grad_clip=grad_clip,
X
Xin Pan 已提交
1758
            name=name)
1759 1760
        self.type = "adagrad"
        self._epsilon = epsilon
1761
        self.initial_accumulator_value = initial_accumulator_value
1762 1763 1764 1765 1766

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1767 1768 1769 1770
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1771 1772 1773 1774 1775 1776

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1777
        # Create the adagrad optimizer op
1778 1779 1780 1781 1782 1783
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1784
                "LearningRate": self._create_param_lr(param_and_grad)
1785 1786 1787
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1788 1789
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1790 1791

        return adagrad_op
1792 1793 1794


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1795
    """
T
tianshuo78520a 已提交
1796
    The Adam optimizer uses an optimization described at the end
1797 1798 1799 1800 1801
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1816 1817
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1818
    Args:
1819 1820
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1821 1822
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1823
            The default value is 0.9.
1824 1825
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1826 1827 1828
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
1829
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1830 1831
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1832 1833 1834 1835 1836
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1837 1838 1839 1840
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1851 1852 1853 1854

    Examples:
        .. code-block:: python

1855 1856 1857 1858 1859 1860
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1861 1862
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1896
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1925
                                                    beta1=beta1,
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1937 1938 1939
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1940 1941
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1942 1943 1944 1945 1946

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1947
                 epsilon=1e-8,
1948
                 parameter_list=None,
X
Xin Pan 已提交
1949
                 regularization=None,
1950
                 grad_clip=None,
Q
Qiao Longfei 已提交
1951
                 name=None,
Q
Qiao Longfei 已提交
1952
                 lazy_mode=False):
1953 1954 1955 1956
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1957
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1958
            learning_rate=learning_rate,
1959
            parameter_list=parameter_list,
X
Xin Pan 已提交
1960
            regularization=regularization,
1961
            grad_clip=grad_clip,
X
Xin Pan 已提交
1962
            name=name)
1963 1964 1965 1966
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1967
        self._lazy_mode = lazy_mode
1968 1969 1970 1971 1972 1973

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1974 1975
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1976 1977 1978
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
1979 1980
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
1981
                shape=[1],
1982
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
1983 1984 1985
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
1986 1987
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
1988
                shape=[1],
1989
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
1990 1991 1992 1993 1994 1995 1996 1997

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1998 1999 2000 2001
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
2002
        lr = self._create_param_lr(param_and_grad)
2003
        # create the adam optimize op
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

2019
        inputs = {
2020 2021
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2022
            "LearningRate": [lr],
2023 2024 2025 2026
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2027 2028
        }
        outputs = {
2029 2030 2031 2032 2033
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

2050 2051
        adam_op = block.append_op(
            type=self.type,
2052 2053 2054
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2055
            stop_gradient=True)
2056 2057 2058

        return adam_op

2059 2060

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
2061
    """
2062 2063 2064 2065
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2066

2067
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2081
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2095
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2096 2097
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2098 2099 2100 2101 2102
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2103 2104 2105 2106
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2107 2108 2109 2110 2111 2112
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2127
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2128 2129
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2130
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2131 2132 2133 2134 2135 2136 2137 2138 2139
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2140 2141 2142
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2143
    _beta1_pow_acc_str = "beta1_pow_acc"
2144 2145 2146 2147 2148

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2149
                 epsilon=1e-8,
2150
                 parameter_list=None,
X
Xin Pan 已提交
2151
                 regularization=None,
2152
                 grad_clip=None,
X
Xin Pan 已提交
2153
                 name=None):
2154 2155 2156 2157
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2158
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2159
            learning_rate=learning_rate,
2160
            parameter_list=parameter_list,
X
Xin Pan 已提交
2161
            regularization=regularization,
2162
            grad_clip=grad_clip,
X
Xin Pan 已提交
2163
            name=name)
2164 2165 2166 2167 2168 2169 2170 2171
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2172 2173
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2174 2175 2176 2177 2178
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2179 2180 2181 2182 2183 2184 2185

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2186 2187
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2188 2189 2190 2191 2192 2193
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2194
                "LearningRate": self._create_param_lr(param_and_grad),
2195 2196
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2197
                "Beta1Pow": beta1_pow_acc
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2208 2209
            },
            stop_gradient=True)
2210 2211 2212

        return adamax_op

2213
    def _finish_update(self, block, parameters_and_grads):
2214 2215 2216
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2217
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2218
            if grad is None or param.trainable is False:
2219
                continue
X
Xin Pan 已提交
2220 2221
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2222 2223
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2224
                block.append_op(
2225 2226 2227
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2228 2229
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2230 2231


2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2270
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2271 2272
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2273 2274 2275 2276 2277 2278 2279 2280
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2281 2282
                 sigma=1e-8,
                 parameter_list=None):
2283 2284 2285 2286
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2287 2288
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2289 2290 2291 2292
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2293 2294 2295 2296 2297 2298 2299
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2300 2301 2302 2303 2304

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2305 2306 2307
        if self._seed == None:
            self._seed = 0

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2319 2320
                "sigma": self._sigma,
                "seed": self._seed
2321 2322 2323 2324 2325 2326
            },
            stop_gradient=True)

        return dpsgd_op


2327
class DecayedAdagradOptimizer(Optimizer):
2328
    """
2329 2330 2331
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2332

2333
    The parameter ``param_out`` update rule with gradient ``grad``:
2334 2335 2336 2337 2338 2339 2340

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2341 2342 2343 2344
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2345 2346 2347
    stability to avoid the division by zero error.

    Args:
2348 2349 2350 2351 2352
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2353
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2354 2355
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2356 2357 2358 2359 2360
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2361 2362 2363 2364
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2365 2366 2367 2368 2369 2370
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2371 2372 2373 2374

    Examples:
        .. code-block:: python

2375 2376
            import paddle.fluid as fluid

2377 2378 2379 2380
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2381
            optimizer.minimize(cost)
2382 2383 2384
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2385 2386 2387 2388
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2389
                 parameter_list=None,
X
Xin Pan 已提交
2390
                 regularization=None,
2391
                 grad_clip=None,
X
Xin Pan 已提交
2392
                 name=None):
2393 2394 2395 2396
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2397
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2398
            learning_rate=learning_rate,
2399
            parameter_list=parameter_list,
X
Xin Pan 已提交
2400
            regularization=regularization,
2401
            grad_clip=grad_clip,
X
Xin Pan 已提交
2402
            name=name)
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2430 2431
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2432
            stop_gradient=True)
2433 2434

        return decayed_adagrad_op
2435 2436


2437
class AdadeltaOptimizer(Optimizer):
2438
    """
Z
Zeng Jinle 已提交
2439
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2440

Z
Zeng Jinle 已提交
2441
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2442 2443 2444
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2445

Z
Zeng Jinle 已提交
2446 2447
    .. math::

Z
Zeng Jinle 已提交
2448
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2449

Z
Zeng Jinle 已提交
2450
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2451

Z
Zeng Jinle 已提交
2452
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2453 2454

    Args:
Z
Zeng Jinle 已提交
2455 2456 2457
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2458
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2459 2460
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2461 2462 2463 2464 2465
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2466 2467 2468 2469
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2470 2471 2472
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2473 2474 2475 2476

    Examples:
        .. code-block:: python

2477
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2478

2479
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2480 2481
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2482 2483
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2484

Z
Zeng Jinle 已提交
2485 2486 2487 2488
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2489
    """
2490

2491 2492 2493
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2494 2495 2496 2497
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2498
                 parameter_list=None,
X
Xin Pan 已提交
2499
                 regularization=None,
2500
                 grad_clip=None,
X
Xin Pan 已提交
2501
                 name=None):
2502 2503 2504 2505 2506 2507
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2508
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2509
            learning_rate=learning_rate,
2510
            parameter_list=parameter_list,
X
Xin Pan 已提交
2511
            regularization=regularization,
2512
            grad_clip=grad_clip,
X
Xin Pan 已提交
2513
            name=name)
2514 2515 2516 2517 2518
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2519 2520
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2521 2522 2523 2524 2525 2526

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2527 2528
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2550 2551
                   "rho": self._rho},
            stop_gradient=True)
2552 2553 2554 2555

        return adadelta_op


Q
qingqing01 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2566
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2567 2568 2569 2570

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2571
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2572 2573 2574 2575 2576 2577

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2578
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2579

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2594 2595 2596 2597
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2598
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2599 2600 2601 2602 2603
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2604 2605 2606
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2607
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2608
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2609
        momentum(float): :math:`\\beta` in equation is the momentum term,
2610
            default is 0.0.
2611 2612 2613 2614
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
2615
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2616 2617
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2618 2619 2620 2621 2622
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2623 2624 2625 2626
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2627 2628
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2629 2630 2631 2632 2633 2634 2635

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2661 2662 2663 2664
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2665
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2666 2667 2668 2669 2670 2671

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2672
                 centered=False,
2673
                 parameter_list=None,
X
Xin Pan 已提交
2674
                 regularization=None,
2675
                 grad_clip=None,
X
Xin Pan 已提交
2676
                 name=None):
Q
qingqing01 已提交
2677
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2678
            learning_rate=learning_rate,
2679
            parameter_list=parameter_list,
X
Xin Pan 已提交
2680
            regularization=regularization,
2681
            grad_clip=grad_clip,
X
Xin Pan 已提交
2682
            name=name)
Q
qingqing01 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2696
        self._centered = centered
Q
qingqing01 已提交
2697 2698 2699 2700 2701 2702 2703 2704

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2705
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2715 2716
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2717 2718 2719 2720 2721 2722 2723
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2724
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2725 2726 2727 2728 2729
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2730 2731
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2732 2733 2734 2735
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2736 2737
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2738 2739
            },
            stop_gradient=True)
Q
qingqing01 已提交
2740 2741 2742 2743

        return rmsprop_op


Q
qiaolongfei 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2784 2785 2786 2787 2788
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
2789
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2790 2791
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2792 2793 2794 2795 2796
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2797 2798 2799 2800
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2801 2802
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2803 2804 2805 2806 2807 2808 2809

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2834

2835
    NOTE:
C
chengduo 已提交
2836
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2837 2838 2839 2840 2841
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2842 2843 2844 2845 2846
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2847
                 parameter_list=None,
X
Xin Pan 已提交
2848
                 regularization=None,
2849
                 grad_clip=None,
X
Xin Pan 已提交
2850
                 name=None):
Q
qiaolongfei 已提交
2851
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2852
            learning_rate=learning_rate,
2853
            parameter_list=parameter_list,
X
Xin Pan 已提交
2854
            regularization=regularization,
2855
            grad_clip=grad_clip,
X
Xin Pan 已提交
2856
            name=name)
Q
qiaolongfei 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
2896
                   "l2": self._l2,
M
minqiyang 已提交
2897 2898
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2899 2900 2901 2902

        return ftrl_op


Y
Yibing Liu 已提交
2903 2904 2905 2906 2907 2908
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2909 2910
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2911 2912 2913 2914 2915

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2916
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2917

Y
Yibing Liu 已提交
2918
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2919

Y
Yibing Liu 已提交
2920
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2921

Y
Yibing Liu 已提交
2922
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2923 2924 2925 2926 2927 2928


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2929 2930 2931 2932 2933 2934 2935 2936
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
2937
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2938 2939
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2940 2941 2942 2943 2944
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2945 2946 2947 2948
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
2949 2950 2951 2952 2953
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
2954 2955 2956 2957 2958 2959

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
2960
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
2961 2962 2963
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
2964 2965 2966 2967 2968
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
2969 2970 2971 2972
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
2973
    # these two not used in op temporarily
Y
Yibing Liu 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
2983
                 parameter_list=None,
Y
Yibing Liu 已提交
2984
                 regularization=None,
2985
                 grad_clip=None,
Y
Yibing Liu 已提交
2986
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
2987 2988 2989 2990 2991 2992 2993 2994
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
2995
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
2996
            regularization=regularization,
2997
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
2998 2999 3000 3001 3002 3003
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3004
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3005 3006 3007

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3008
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3019 3020 3021 3022 3023 3024
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3046
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3047 3048 3049 3050 3051 3052
            },
            stop_gradient=True)

        return lamb_op


3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3066
Dpsgd = DpsgdOptimizer
3067
DecayedAdagrad = DecayedAdagradOptimizer
3068
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3069
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3070
Ftrl = FtrlOptimizer
3071
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3072
Lamb = LambOptimizer
3073 3074 3075


class ModelAverage(Optimizer):
3076
    """
3077
	:api_attr: Static Graph
S
swtkiwi 已提交
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3107 3108

    Args:
3109 3110 3111
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3112 3113 3114 3115 3116
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3117 3118 3119
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3120

3121
    Examples:
Q
qiaolongfei 已提交
3122 3123 3124

      .. code-block:: python

3125 3126 3127 3128 3129 3130
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3131

3132 3133 3134 3135
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3136
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3137 3138 3139 3140 3141 3142 3143 3144
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3145
                                                         max_average_window=12500)
3146 3147

            exe.run(startup_program)
3148 3149 3150 3151 3152
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3153 3154

            # apply ModelAverage
3155
            with model_average.apply(exe):
3156 3157 3158 3159
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3160 3161 3162
    """

    def __init__(self,
W
wanghaoshuang 已提交
3163
                 average_window_rate,
3164 3165
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3166 3167
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3168 3169
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3170 3171
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3172 3173 3174
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3175

3176
        self.params_grads = []
3177 3178
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3179
            if param.do_model_average != False:
3180
                grad = param.block.create_var(
3181 3182
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3183 3184
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3185
                    stop_gradient=True)
3186
                self.params_grads.append((param, grad))
3187

3188
        for param, grad in self.params_grads:
3189 3190
            if grad is None:
                continue
X
Xin Pan 已提交
3191 3192
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3193
                self._append_average_accumulate_op(param)
3194

3195 3196 3197 3198
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3199
                self._add_average_apply_op(block, param_grad)
3200 3201 3202 3203 3204

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3205
                self._add_average_restore_op(block, param_grad)
3206

3207
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3208 3209 3210 3211 3212 3213
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3214
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3215
        old_num_accumulates = block._clone_variable(
3216
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3217
        num_updates = block._clone_variable(
3218 3219 3220 3221 3222 3223
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3224 3225 3226 3227
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3228
        ops._elementwise_div(x=sum, y=tmp, out=param)
3229 3230

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3231 3232
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3270 3271
            },
            stop_gradient=True)
3272

S
rename  
sneaxiy 已提交
3273
    @signature_safe_contextmanager
3274
    def apply(self, executor, need_restore=True):
3275 3276
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3277 3278

        Args:
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3323
        """
3324 3325 3326 3327 3328 3329
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3330 3331

    def restore(self, executor):
3332 3333
        """
        Restore ``Parameter`` values of current model.
3334 3335
        
        Args:
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3380
        """
3381
        executor.run(self.restore_program)
3382 3383 3384 3385


class ExponentialMovingAverage(object):
    """
3386
	:api_attr: Static Graph
S
swtkiwi 已提交
3387

3388 3389 3390 3391 3392 3393
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3394
        \\text{EMA}_0 & = 0
3395

3396 3397
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3398 3399 3400 3401
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3423 3424 3425


    Args:
Y
Yibing Liu 已提交
3426 3427 3428 3429 3430 3431 3432
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3433 3434 3435 3436 3437


    Examples:

	.. code-block:: python
3438 3439 3440 3441 3442

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3443
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3444 3445 3446 3447 3448 3449 3450 3451
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3452
	    global_steps = fluid.layers.autoincreased_step_counter()
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3482 3483
    """

3484
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3485 3486 3487
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3488
        self._decay = decay
3489
        self._thres_steps = thres_steps
3490
        self._name = name if name is not None else ''
3491 3492
        self._decay_var = self._get_ema_decay()

3493
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3494
        self._params_tmps = []
3495
        for param in default_main_program().global_block().all_parameters():
3496 3497 3498 3499 3500 3501 3502
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3503
                self._params_tmps.append((param, tmp))
3504

Y
Yibing Liu 已提交
3505 3506
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3507 3508
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3509
                self._ema_vars[param.name] = self._create_ema_vars(param)
3510 3511 3512 3513

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3514
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3515
            for param, tmp in self._params_tmps:
3516 3517
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3518
                ema = block._clone_variable(self._ema_vars[param.name])
3519
                layers.assign(input=param, output=tmp)
3520
                # bias correction
3521 3522 3523
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
                        layers.assign(output=ema, input=ema / (1.0 - decay_pow))
3524 3525 3526 3527 3528
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3529
            for param, tmp in self._params_tmps:
3530 3531 3532 3533
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3556 3557 3558 3559 3560 3561 3562
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3563
        decay_var = block._clone_variable(self._decay_var)
3564 3565
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3566

Y
Yibing Liu 已提交
3567
    def _create_ema_vars(self, param):
3568 3569 3570 3571 3572 3573 3574 3575 3576
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3577 3578 3579 3580 3581
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3582 3583
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3584
        param_master_emas = []
Y
Yibing Liu 已提交
3585 3586 3587 3588
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3589
                if param.name + '.master' in self._ema_vars:
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3607

3608 3609 3610 3611 3612 3613 3614
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3615 3616
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3632 3633 3634


class PipelineOptimizer(object):
3635
    """
3636
	:api_attr: Static Graph
S
swtkiwi 已提交
3637

3638 3639 3640 3641
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
3642

3643
    Args:
3644 3645 3646 3647
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
3648 3649
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3650

3651
            import paddle.fluid as fluid
H
hutuxian 已提交
3652 3653
            import paddle.fluid.layers as layers

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
3670
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
3671
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
3672
            optimizer.minimize(loss)
3673 3674 3675 3676 3677 3678 3679 3680 3681

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
3682 3683
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3684
            batch_size = 1
H
hutuxian 已提交
3685 3686 3687 3688 3689
            filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
            dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
            dataset.set_use_var([x,y])
            dataset.set_batch_size(batch_size)
            dataset.set_filelist(filelist)
3690
            data_loader.start()
H
hutuxian 已提交
3691
            exe.train_from_dataset(
3692 3693 3694
                    fluid.default_main_program(),
                    dataset)
            data_loader.reset()
3695 3696
    """

3697
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
3698 3699
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
3700 3701 3702 3703 3704
        if not isinstance(optimizer, Optimizer):
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
                             "Optimizer, but the given type is {}.".format(
                                 type(optimizer)))
H
hutuxian 已提交
3705
        self._optimizer = optimizer
3706 3707 3708 3709 3710
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
            "start_cpu_core_id must be greater than or equal to 0.")
H
hutuxian 已提交
3711
        self._start_cpu_core_id = start_cpu_core_id
3712 3713 3714 3715 3716 3717 3718
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
        self._param_device_map = dict()
H
hutuxian 已提交
3719

H
hutuxian 已提交
3720
    def _create_vars(self, block, main_program):
3721
        # Create vars for block, copied from main_program's global block
H
hutuxian 已提交
3722 3723 3724 3725 3726
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
3727 3728 3729
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
3730 3731 3732
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
3733 3734 3735 3736
                if source_var.type == core.VarDesc.VarType.READER:
                    block.create_var(name=var, type=core.VarDesc.VarType.READER)
                else:
                    block._clone_variable(source_var, False)
H
hutuxian 已提交
3737

3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
    def _is_loss_grad_op(self, op):
        if self._op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self._op_role_key])
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

    def _is_backward_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Backward)

    def _is_optimize_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Optimize)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

    def _split_program(self, main_program):
H
hutuxian 已提交
3758
        """
3759 3760 3761 3762
        Split a program into sections according to devices that ops run on.

        Args:
            main_program (Program): the main program
H
hutuxian 已提交
3763
        """
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
        programs = []
        # Map from device to its corresponding section program info
        device_program_map = dict()
        block = main_program.block(0)

        for op in block.ops:
            device = op.attr(self._op_device_key)

            if device not in device_program_map:
                program = {"program": Program()}
                device_program_map[device] = program
            program = device_program_map[device]
            op_desc = op.desc
            ap_op = program["program"].block(0).desc.append_op()
            ap_op.copy_from(op_desc)

        for key in sorted(device_program_map.keys()):
            program = device_program_map[key]
            program['program']._sync_with_cpp()
            programs.append(program)
H
hutuxian 已提交
3784

3785
        return programs
H
hutuxian 已提交
3786

3787
    def _find_post_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3788
        """
3789 3790 3791 3792 3793 3794 3795
        Find the real post op that has variable named var_name as input.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as output.
            var_name (string): Variable name.
H
hutuxian 已提交
3796
        """
3797 3798
        post_op = []
        before = True
H
hutuxian 已提交
3799
        for op in ops:
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
            if op == cur_op:
                before = False
                continue
            if before:
                continue
            for in_var_name in op.input_arg_names:
                if in_var_name == var_name:
                    post_op.append(op)
        if post_op:
            if not len(post_op) == 1:
                raise ValueError("Each op can only have one post op.")
            return post_op[0]
        return None

    def _find_real_prev_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3815
        """
3816 3817 3818 3819 3820 3821 3822
        Find the real previous op that outputs variable named var_name.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as input.
            var_name (string): Variable name.
H
hutuxian 已提交
3823
        """
3824
        prev_op = []
H
hutuxian 已提交
3825
        for op in ops:
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
            if op == cur_op:
                break
            for out_var_name in op.output_arg_names:
                if out_var_name == var_name:
                    prev_op.append(op)
        if prev_op:
            # A op may have more than one prev op,
            # e.g., for 'learning_rate', there may be multiple ops have it as
            # output.
            return prev_op[-1]
        return None

    def _rename_arg(self, op, old_name, new_name):
        op_desc = op.desc
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=ref_var.desc.need_check_feed())
        return new_var

    def _get_data_var_info(self, block):
        """
        Get all vars whose is_data attribute are true and then rename them.
H
hutuxian 已提交
3865

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
        For PipelineTrainer, all data vars are binded to
        minibatch scope, so we have to feed them to the microbatch
        to avoid conflicts. The vars feeded to microbatch have to
        be renamed.
        """
        # A map from var name to the renamed name.
        raw_name_new_name_map = dict()
        # Because we will create vars in block, it is more safe
        # to get all var_names before iteration.
        var_names = list(block.vars.keys())
        for var_name in var_names:
            var = block.var(var_name)
            if not var.is_data:
                continue
            assert var_name not in raw_name_new_name_map, (
                "{} has already been processed.".format(var_name))
            new_name = unique_name.generate(var_name)
            raw_name_new_name_map[var_name] = new_name
            new_var = self._create_var(block, var, new_name)
            new_var.is_data = False

        # map of data to devices that that data on
        data_devices_map = dict()
        for op in block.ops:
            dev_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                if var_name not in raw_name_new_name_map:
                    continue
                if not var_name in data_devices_map:
                    data_devices_map[var_name] = []
                if not dev_spec in data_devices_map[var_name]:
                    data_devices_map[var_name].append(dev_spec)
                new_name = raw_name_new_name_map[var_name]
                #self._rename_arg(op, var_name, new_name)
        return data_devices_map, raw_name_new_name_map

    def _rename_var_in_block(self, block, raw_name_new_name_map):
        """
        Rename vars whose names in raw_name_new_name_map to the corresponding
        new names.
        """
        for op in block.ops:
            if op.type == "enqueue" or op.type == "dequeue":
                continue
            for var_name in op.input_arg_names:
                if var_name in raw_name_new_name_map:
                    new_name = raw_name_new_name_map[var_name]
                    self._rename_arg(op, var_name, new_name)
H
hutuxian 已提交
3914

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
    def _insert_enq_deq_for_data_var(self, main_block, programs, startup,
                                     devices):
        """
        Insert enqueue and dequeue ops for data var

        Args:
            main_block (Block): Global block for main program
            programs (dict): Dictionary for section params
            startup (Program): Startup program
            devices (list): List of devices in the format (dev:dev_index)
        """
        main_program = main_block.program
        data_devices_map, raw_name_new_name_map = self._get_data_var_info(
            main_block)

        first_prog = programs[0]['program']
        first_block = first_prog.block(0)
        enqueue_index = 0
        if first_block.ops[0].type == "create_py_reader" or (
                first_block.ops[1].type == "create_py_reader"):
            for op in first_block.ops:
                if op.type == "read":
                    enqueue_index += 1
                    break
                enqueue_index += 1
        first_dev_spec = devices[0]
        for var_name in data_devices_map.keys():
            for device in data_devices_map[var_name]:
                # step1: generate queue for each pair of data var and device
                # that that data on
                queue_name = var_name + "_blocking_queue"
                queue_name = unique_name.generate(queue_name)
                queue_var = startup.block(0).create_var(
                    name=queue_name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup.block(0).append_op(
                    type='queue_generator',
                    attrs={
                        'names': [queue_name],
                        'capacity': self._num_microbatches
                    })
                main_var = main_block.var(var_name)
                assert main_var.is_data
                if not var_name in first_block.vars:
                    self._create_var(first_block, main_var, var_name)
                first_block._insert_op(
                    index=enqueue_index,
                    type='enqueue',
                    inputs={'X': first_block.var(var_name)},
                    attrs={
                        'queue_name': queue_name,
                        self._op_device_key: first_dev_spec,
                        self._op_role_key: self._op_role.Forward
                    })
                # Get the device that that data on
                assert device in devices
                prog_index = devices.index(device)
                prog = programs[prog_index]['program']
                block = prog.block(0)
                index = 0
                if device == first_dev_spec:
                    index = enqueue_index + 1
                new_name = raw_name_new_name_map[var_name]
                source_var = main_program.block(0).var(var_name)
                new_var = self._create_var(block, source_var, new_name)
                block._insert_op(
                    index=index,
                    type='dequeue',
                    outputs={'Out': [new_var]},
                    attrs={
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Forward,
                        'queue_name': queue_name,
                    })
                self._rename_var_in_block(block, raw_name_new_name_map)

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
3998

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

    def _update_param_device_map(self, params_grads, block):
        for param_grad in params_grads:
            if not param_grad[0].trainable: continue
            param_name = param_grad[0].name
            ops = block.ops
            for op in ops:
                input_arg_names = op.input_arg_names
                if param_name in input_arg_names:
                    self._param_device_map[param_name] = op.attr(
                        self._op_device_key)
                    break

    def _add_opdevice_attr_for_regularization_clip(self, block):
H
hutuxian 已提交
4018
        """
4019
        Add op_device attribute for regulization and clip ops.
H
hutuxian 已提交
4020
        """
4021 4022 4023
        for op in block.ops:
            # role for regularization and clip ops is optimize
            if int(op.attr(self._op_role_key)) != int(self._op_role.Optimize):
H
hutuxian 已提交
4024
                continue
4025 4026 4027 4028 4029 4030 4031 4032 4033
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
            param_name = block.vars[op_role_var[0]].name
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
H
hutuxian 已提交
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
    def _add_default_opdevice_attr(self, block):
        """
        1. Add default op_device attribute for lr-related ops.
           The default value is the one that of the first place.
        2. Add default op_device attribute for sum ops added during
           backward. For these ops, we set the op_device attribute
           as the one of its post op, i.e, which op has the output of the
           sum op as an input.
        """
        first_devcie = ""

        # Get the device spec of the first place.
        # device_spec: 'cpu' for cpu device and 'gpu:id' for gpu device,
        # e.g. 'gpu:0', 'gpu:1', etc.
        for op in block.ops:
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                first_device = op.attr(self._op_device_key)
                break
        assert first_device

        # set op_device attr for lr-related ops
        lrsched_role = int(self._op_role.LRSched)
        for op in block.ops:
            if not op.has_attr(self._op_device_key) or (
                    op.attr(self._op_device_key) == ""):
                if op.type == "sum":
                    # For sum ops that compute the sum of @RENAMED@ vars
                    for name in op.desc.input_arg_names():
                        assert '@RENAME@' in name
                    assert len(op.desc.output_arg_names()) == 1
                    out_name = op.desc.output_arg_names()[0]
                    post_op = self._find_post_op(block.ops, op, out_name)
                    device = post_op.attr(self._op_device_key)
                    assert device
                    op._set_attr(self._op_device_key, device)
                    continue
H
hutuxian 已提交
4072

4073 4074 4075 4076
                assert op.attr(self._op_role_key) == lrsched_role, (
                    "Op whose op_device attr has not been set for pipeline"
                    " must be of the role LRSched.")
                op._set_attr(self._op_device_key, first_device)
H
hutuxian 已提交
4077

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
    def _check_validation(self, block):
        """
        Check whether ops in a block are all validate (i.e., the 
        op_device attribute has been set).
        Then, return all device specifications in order.
        """
        device_specs = []
        for op in block.ops:
            type = op.type
            if not op._has_kernel(type):
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
            dev_spec = op.attr(self._op_device_key)
            assert dev_spec, ("op_device attribute for op "
                              "{} has not been set.".format(op.type))
            if not dev_spec in device_specs:
                device_specs.append(dev_spec)
        return device_specs

    def _insert_enq_deq_ops_for_boundaries(self, block, origin_block,
                                           startup_program):
        """
        Insert a pair of enqueue and dequeue ops for every two
        consecutive ops on different devices.
        """
        startup_block = startup_program.global_block()
        extra_index = 0

        # A map from var to device spec where op takes it as input,
        # avoiding multiple enqueue and dequeue ops.
        var_devspec = dict()

        for index, op in list(enumerate(origin_block.ops)):
            cur_device_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                # i.e., lod_tensor_blocking_queue created by DataLoader,
                # which only exists in startup program.
                if not var_name in origin_block.vars: continue
                var = block.var(var_name)
                # skip data, because we will process it later
                if var.is_data: continue
                prev_op = self._find_real_prev_op(origin_block.ops, op,
                                                  var_name)
                if prev_op is None:
                    continue
                prev_device_spec = prev_op.attr(self._op_device_key)

                if prev_device_spec != cur_device_spec:
                    if var_name not in var_devspec:
                        var_devspec[var_name] = []
                    if cur_device_spec in var_devspec[var_name]: continue
                    var_devspec[var_name].append(cur_device_spec)

                    queue_name = var_name + "_blocking_queue"
                    queue_name = unique_name.generate(queue_name)
                    queue_var = startup_block.create_var(
                        name=queue_name,
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
                    startup_block.append_op(
                        type='queue_generator',
                        attrs={
                            'names': [queue_name],
                            'capacity': self._num_microbatches
                        })
                    op_role = op.all_attrs()[self._op_role_key]
                    var = block.vars[var_name]
                    block._insert_op(
                        index=index + extra_index,
                        type='enqueue',
                        inputs={'X': var},
                        attrs={
                            'queue_name': queue_name,
                            self._op_device_key: prev_device_spec,
                            self._op_role_key: op_role
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
                        type='dequeue',
                        outputs={'Out': [var]},
                        attrs={
                            self._op_device_key: cur_device_spec,
                            'queue_name': queue_name,
                            self._op_role_key: op_role
                        })
                    extra_index += 1

    def _add_dequeue_ops_for_optimize(self, block, startup_program):
        startup_block = startup_program.global_block()
        grad_queue_map = dict()
        grad_device_map = dict()
        optimize_index = None
        grad_names_to_dequeue = []

        for index, op in reversed(list(enumerate(block.ops))):
            device = op.attr(self._op_device_key)
            # Optimizer pass
            if not self._is_optimize_op(op):
                optimize_index = index + 1
                break
            if not self._is_update_op(op): continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
            grad_name = op_role_var[1]
            assert grad_name not in grad_device_map
            assert grad_name not in grad_names_to_dequeue
            grad_device_map[grad_name] = device
            grad_names_to_dequeue.append(grad_name)

        for grad_name in grad_names_to_dequeue:
            device = grad_device_map[grad_name]
            grad_names = []
            grads = []
            queue_name = grad_name + "_blocking_queue"
            queue_name = unique_name.generate(queue_name)
            grad_queue_map[grad_name] = queue_name
            ref_var = block.vars[grad_name]
            queue_var = startup_block.create_var(
                name=queue_name,
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            startup_block.append_op(
                type='queue_generator',
                attrs={
                    'names': [queue_name],
                    'capacity': self._num_microbatches
                })
            orig_var_name = self._strip_grad_suffix(grad_name)
            for _ in range(self._num_microbatches):
                u_name = unique_name.generate(orig_var_name)
                u_grad_name = self._append_grad_suffix(u_name)
                grad_var = self._create_var(block, ref_var, u_grad_name)
                grad_names.append(u_grad_name)
                grads.append(grad_var)
            block._insert_op(
                index=optimize_index,
                type='dequeue',
                outputs={'Out': grads},
                attrs={
                    self._op_device_key: device,
                    'queue_name': queue_name,
                    self._op_role_key: self._op_role.Optimize
                })
            block._insert_op(
                index=optimize_index + 1,
                type='sum',
                inputs={'X': grad_names},
                outputs={'Out': ref_var},
                attrs={
                    self._op_device_key: device,
                    self._op_role_key: self._op_role.Optimize
                })
        return grad_queue_map

    def _insert_enq_deq_ops_for_update(self, block, startup_program):
        """
        Insert enqueue and dequeue ops for gradients of parameters.
        """
        startup_block = startup_program.global_block()
        grad_queue_map = self._add_dequeue_ops_for_optimize(block,
                                                            startup_program)

        for index, op in reversed(list(enumerate(block.ops))):
            offset = index
            device = op.attr(self._op_device_key)

            # Backward pass
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                scale_factor = self._num_microbatches
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / scale_factor,
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Backward
                    })
                break
            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.all_attrs()[self._op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
                    assert grad_name in grad_queue_map
                    queue_name = grad_queue_map[grad_name]
                    block._insert_op(
                        index=offset + 1,
                        type='enqueue',
                        inputs={'X': block.vars[grad_name]},
                        attrs={
                            'queue_name': queue_name,
                            self._op_device_key: device,
                            self._op_role_key: self._op_role.Backward
                        })
                    offset += 1

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
        for prog_info in program_list:
            prog = prog_info['program']
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
                for op in origin_sub_block.ops:
                    op_desc = op.desc
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
                op._set_attr('sub_block:', new_sub_block)

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
        for prog_info in program_list:
            prog = prog_info['program']
            block = prog.block(0)
            for var_name in block.vars:
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
                    if op.type == "dequeue": continue
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue

                queue_name = var_name + "_blocking_queue"
                queue_name = unique_name.generate(queue_name)
                queue_var = startup_prog.block(0).create_var(
                    name=queue_name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup_prog.block(0).append_op(
                    type='queue_generator',
                    attrs={
                        'names': [queue_name],
                        'capacity': self._num_microbatches
                    })
                write_block._insert_op(
                    index=0,
                    type='enqueue',
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        'queue_name': queue_name,
                        self._op_device_key: write_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched
                    })
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_block._insert_op(
                    index=0,
                    type='dequeue',
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
                        'queue_name': queue_name,
                    })
H
hutuxian 已提交
4402 4403 4404 4405 4406 4407

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
        main_block = loss.block
        if startup_program is None:
            startup_program = default_startup_program()
        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._update_param_device_map(params_grads, main_block)

        # Step1: add default op_device attribute for regulization and clip ops
        self._add_opdevice_attr_for_regularization_clip(main_block)

        # Step2: add default op_device attribute for ops whose op_device
        # attribute have not been set yet.
        self._add_default_opdevice_attr(main_block)
        device_specs = self._check_validation(main_block)

        # Step3: add enqueue and dequeue ops between section boundaries
        origin_prog = main_block.program.clone(for_test=False)
        origin_main_block = origin_prog.global_block()
        self._insert_enq_deq_ops_for_boundaries(main_block, origin_main_block,
                                                startup_program)

        # Step4: add a pair of enqueue and dequeueN for parameter gradients
        self._insert_enq_deq_ops_for_update(main_block, startup_program)

        main_program = main_block.program

        place_list = []
        place_id_list = []
        for dev_spec in device_specs:
            if dev_spec == "cpu":
                place_list.append(core.CPUPlace())
                place_id_list.append(-1)
            elif "gpu" in dev_spec and ":" in dev_spec:
                dev_index = dev_spec.split(":")[1]
                place_list.append(core.CUDAPlace(int(dev_index)))
                place_id_list.append(int(dev_index))
            else:
                raise ValueError("Unknown device type: %s", dev_spec)

        # Step5: split program into sections and add pairs of
        # enqueue and dequeue ops for data var.
        if len(place_list) == 0:
H
hutuxian 已提交
4450
            program_list = []
4451 4452 4453 4454 4455
            ptmp = {
                "program": main_program,
                "input_set": set(),
                "output_set": set()
            }
H
hutuxian 已提交
4456 4457
            program_list.append(ptmp)
        else:
4458
            program_list = self._split_program(main_program)
H
hutuxian 已提交
4459
            for p in program_list:
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
                self._create_vars(p["program"].block(0), main_program)
        self._insert_enq_deq_for_data_var(main_block, program_list,
                                          startup_program, device_specs)

        # Step6: Special Case: process persistable vars that exist in
        # multiple sections
        self._process_persistable_vars_in_multi_sections(
            main_program, startup_program, program_list)

        # Step7: Add sub blocks for section programs
        self._add_sub_blocks(main_block, program_list)

        main_program._pipeline_opt = {
H
hutuxian 已提交
4473 4474 4475
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
            "section_program_list": program_list,
4476 4477 4478
            "place_list": place_list,
            "place_id_list": place_id_list,
            "sync_steps": -1,
L
lilong12 已提交
4479
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
4480 4481
            "start_cpu_core_id": self._start_cpu_core_id,
        }
4482
        return optimize_ops, params_grads, program_list
M
mapingshuo 已提交
4483 4484


M
mapingshuo 已提交
4485 4486
class RecomputeOptimizer(Optimizer):
    """
4487
	:api_attr: Static Graph
S
swtkiwi 已提交
4488

M
mapingshuo 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
4549 4550
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
4551 4552
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
4553 4554
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
M
mapingshuo 已提交
4555 4556 4557 4558 4559 4560

    def _set_checkpoints(self, checkpoints):
        self._checkpoints = checkpoints

    def load(self, stat_dict):
        """
4561
	:api_attr: Static Graph
S
swtkiwi 已提交
4562

M
mapingshuo 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
            stat_dict: the dict load by load_persistable method

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
                    stat_dict = {}
                    sgd.load(stat_dict)
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4630
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4631 4632 4633 4634
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4635
                    no_grad_set=None)
M
mapingshuo 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
4651
                 callbacks=None):
M
mapingshuo 已提交
4652 4653 4654 4655 4656 4657 4658
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
4659 4660
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4685
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4686 4687 4688 4689
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4690
                    no_grad_set=None)
M
mapingshuo 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
                print("Finished backward")
        """

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
            params_grads = append_backward(
                loss,
                parameter_list,
                no_grad_set,
                checkpoints=self._checkpoints)
4706 4707
            # Note: since we can't use all_reduce_op now,
            #  dgc_op should be the last op of one grad.
M
mapingshuo 已提交
4708 4709
            if hasattr(self._optimizer, "_append_dgc_ops"):
                self._optimizer._append_dgc_ops(params_grads)
M
mapingshuo 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
4729
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
4730 4731 4732 4733 4734 4735 4736 4737
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4738
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4739 4740 4741 4742
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4743
                    no_grad_set=None)
M
mapingshuo 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
4758
                 no_grad_set=None):
4759
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
4769
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
4770 4771 4772 4773 4774 4775 4776

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
4777 4778
class LookaheadOptimizer(object):
    """
4779
	:api_attr: Static Graph
S
swtkiwi 已提交
4780

M
mapingshuo 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
4834 4835
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

4887 4888 4889 4890 4891 4892 4893 4894
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
4895

4896 4897 4898 4899 4900 4901 4902
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
4903

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
4935
        return mini_out
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):

        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)

        #TODO(mapingshuo) support sparse embedding
        for k, v in params_grads:
            assert (
                v.type != core.VarDesc.VarType.SELECTED_ROWS
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

        param_to_grad = {k.name: v for (k, v) in params_grads}

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program and startup_program
        startup_block = startup_program.global_block()
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

        for param_name in param_names:
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            gradient_merge_k = layers.create_global_var(
                name="gradient_merge_k",
                shape=[1],
                value=int(self.k_steps),
                dtype='int32',
                persistable=True)

            # Add Var step
            gradient_merge_step = layers.create_global_var(
                name="gradient_merge_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=gradient_merge_step, value=1.0, in_place=True)

            # gradient merge
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(gradient_merge_step, gradient_merge_k)
            with layers.control_flow.Switch() as switch:
                with switch.case(mod != zero_var):
                    # 1. update the gradient_merge_vars
                    #  gradient_merge_vars += gradient_vars
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        cur_block.append_op(
                            type="elementwise_add",
                            inputs={'X': grad,
                                    'Y': grad_merge},
                            outputs={'Out': grad_merge},
                            attrs={'axis': -1,
                                   'use_mkldnn': False})

                with switch.default():
                    # 1. update the graient_vars
                    #     gradient_vars += gradient_merge_vars
                    cur_block_idx = main_block.program.current_block_idx
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        if self.avg:
                            tmp_var = layers.elementwise_add(grad, grad_merge)
                            cur_block.append_op(
                                type='scale',
                                inputs={'X': tmp_var},
                                outputs={'Out': grad},
                                attrs={
                                    'scale': 1.0 / self.k_steps,
                                    'bias': 0.0,
                                    'bias_after_scale': False
                                })
                        else:
                            cur_block.append_op(
                                type="elementwise_add",
                                inputs={'X': grad,
                                        'Y': grad_merge},
                                outputs={'Out': grad},
                                attrs={'axis': -1,
                                       'use_mkldnn': False})

                    # 2. apply_optimize
                    target_grad_block = main_block.program._create_block(
                        parent_idx=cur_block.parent_idx)
                    target_grad_block._set_forward_block_idx(cur_block_idx)
                    main_block.program.current_block_idx = cur_block_idx

                    optimize_ops = self.inner_optimizer.apply_optimize(
                        loss,
                        startup_program=startup_program,
                        params_grads=params_grads)

                    # 3. clear gradient_merge_vars
                    for param_name in param_names:
                        grad_merge = param_to_gradient_merge[param_name]
                        layers.fill_constant(
                            shape=grad_merge.shape,
                            dtype=grad_merge.dtype,
                            value=0.0,
                            out=grad_merge)
        return optimize_ops, params_grads