detection.py 115.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
42
    'retinanet_target_assign',
43 44 45 46
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
47
    'generate_mask_labels',
48 49 50 51
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
52
    'yolo_box',
53
    'box_clip',
J
jerrywgz 已提交
54
    'multiclass_nms',
55
    'distribute_fpn_proposals',
56
    'box_decoder_and_assign',
57
    'collect_fpn_proposals',
C
chengduoZH 已提交
58
]
59 60


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
    **Target Assign Layer for Retinanet .**

    This layer can be, for given the Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each anchor, these target labels are used for training
    retinanet. Every anchor is assigned with a length :attr:`num_classes`
    one-hot vector of classification targets, and a 4-vector of box regression
    targets. The assignment rules are as followed:
    
    1. Anchors are assigned to ground-truth boxes when: (i) it has the highest
    IoU overlap with a ground-truth box, or (ii) it has an IoU overlap higher
    than positive_overlap(0.5) with any ground-truth box.
    
    2. Anchors are assigned to background when its IoU ratio is lower than
    negative_overlap (0.4) for all ground-truth boxes.
    
    When an anchor is assigned with a ground-truth box which is the i-th category,
    the i-th entry in its C vector of targets is set to 1 and all other entries
    are set to 0. When an anchor is assigned with background, all entries are set
    to 0. Anchors that are not assigned do not contribute to the training
    objective. The regression targets are the encoded ground-truth boxes
    associated with the assigned anchors.
 
    Args:
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        cls_logits(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            number of classes (excluding background), M is number of bounding boxes.
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
        gt_boxes(Variable): The ground-truth bounding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_labels(variable): The ground-truth labels are a 2D LoDTensor with
            shape [Ng, 1], Ng is the total number of ground-truth labels of
            mini-batch input.
        is_crowd(Variable): A 1-D LoDTensor which indicates ground-truth is crowd.
        im_info(Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
            3 is the height, width and scale.
        num_classes(int32): The number of classes.
        positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
        tuple:
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox, bbox_inside_weight, fg_num) is returned. The
               predicted_scores and predicted_location are the predicted result
               of the retinanet.The target_label and target_bbox are the ground
               truth, respectively. The predicted_location is a 2D Tensor with
               shape [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, C], and the shape of target_label is [F + B, 1], B is the
               number of the background anchors, the F and B is depends on the
               input of this operator. Bbox_inside_weight represents whether the
               predicted location is fake foreground or not and the shape is [F, 4].
               Fg_num is the foreground number (including fake foreground) which
               is needed by focal loss.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          bbox_pred = layers.data(name='bbox_pred', shape=[1, 100, 4],
                            append_batch_size=False, dtype='float32')
          cls_logits = layers.data(name='cls_logits', shape=[1, 100, 10],
                            append_batch_size=False, dtype='float32')
          anchor_box = layers.data(name='anchor_box', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          anchor_var = layers.data(name='anchor_var', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
          gt_labels = layers.data(name='gt_labels', shape=[10, 1],
                            append_batch_size=False, dtype='float32')
          is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
          im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
          loc_pred, score_pred, loc_target, score_target, bbox_inside_weight, fg_num =
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


219 220
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
221
                      anchor_box,
222
                      anchor_var,
223 224 225
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
226
                      rpn_batch_size_per_im=256,
227 228
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
229
                      rpn_positive_overlap=0.7,
230 231
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
232
    """
H
haowang101779990 已提交
233
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
251
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
252 253 254
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
255 256 257
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
258 259 260 261 262 263
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
264 265
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
266
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
267 268
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
269 270 271
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
272
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
273 274 275
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
276 277 278 279 280 281 282 283 284
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
285
        tuple:
Y
Yuan Gao 已提交
286
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
287 288
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
289 290 291 292 293 294 295
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
296
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
297 298
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
299 300 301 302

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            import paddle.fluid as fluid
            bbox_pred = fluid.layers.data(name='bbox_pred', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
            cls_logits = fluid.layers.data(name='cls_logits', shape=[100, 1],
                            append_batch_size=False, dtype='float32')
            anchor_box = fluid.layers.data(name='anchor_box', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            anchor_var = fluid.layers.data(name='anchor_var', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
            loc_pred, score_pred, loc_target, score_target, bbox_inside_weight=
                fluid.layers.rpn_target_assign(bbox_pred, cls_logits,
                anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
321

Y
Yuan Gao 已提交
322 323 324
    """

    helper = LayerHelper('rpn_target_assign', **locals())
325
    # Assign target label to anchors
J
jerrywgz 已提交
326 327 328 329 330 331 332
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
333 334
    helper.append_op(
        type="rpn_target_assign",
335 336 337 338 339 340
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
341 342 343
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
344
            'TargetLabel': target_label,
J
jerrywgz 已提交
345
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
346
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
347 348 349
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
350
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
351 352
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
353 354
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
355 356
        })

357 358 359 360
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
361
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
362

363 364 365 366
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
367

J
jerrywgz 已提交
368
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
369 370


Y
Yuan Gao 已提交
371 372
def detection_output(loc,
                     scores,
373 374 375 376 377 378 379 380 381
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
382
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
383

384 385
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
386

387 388 389 390 391 392
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
393 394 395 396 397 398

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
399 400 401 402
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
425 426
        Variable:

427
            The detection outputs is a LoDTensor with shape [No, 6].
428 429 430 431 432 433
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
J
jerrywgz 已提交
434
            LoD will be set to {1}, and output tensor only contains one
435
            value, which is -1.
J
jerrywgz 已提交
436 437
            (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}.)
438 439 440 441

    Examples:
        .. code-block:: python

442 443 444
            import paddle.fluid as fluid

            pb = fluid.layers.data(name='prior_box', shape=[10, 4],
445
                         append_batch_size=False, dtype='float32')
446
            pbv = fluid.layers.data(name='prior_box_var', shape=[10, 4],
447
                          append_batch_size=False, dtype='float32')
448
            loc = fluid.layers.data(name='target_box', shape=[2, 21, 4],
449
                          append_batch_size=False, dtype='float32')
450
            scores = fluid.layers.data(name='scores', shape=[2, 21, 10],
451
                          append_batch_size=False, dtype='float32')
452
            nmsed_outs = fluid.layers.detection_output(scores=scores,
453 454 455 456 457
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
458 459 460 461 462
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
463
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
464
    scores = nn.transpose(scores, perm=[0, 2, 1])
465
    scores.stop_gradient = True
X
Xin Pan 已提交
466 467
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
468 469 470 471 472 473 474 475 476 477 478 479 480
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
481
    nmsed_outs.stop_gradient = True
482
    return nmsed_outs
C
chengduoZH 已提交
483 484


X
Xin Pan 已提交
485 486 487 488 489 490 491 492 493 494 495
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
496 497 498 499 500 501 502 503 504

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[4], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4], dtype='float32')
            iou = fluid.layers.iou_similarity(x=x, y=y)
X
Xin Pan 已提交
505 506 507
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
508
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
528 529
              name=None,
              axis=0):
X
Xin Pan 已提交
530
    """
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
569 570

    Args:
571 572 573 574 575 576 577
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
                             [M, 4] holds M boxes, each box is represented as
                             [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
                             left top coordinate of the anchor box, if the 
                             input is image feature map, they are close to 
                             the origin of the coordinate system. [xmax, ymax]
                             is the right bottom coordinate of the anchor box.       
578 579 580 581
        prior_box_var(Variable|list|None): prior_box_var supports two types 
                              of input. One is variable with shape [M, 4] 
                              holds M group. The other one is list consist of 
                              4 elements shared by all boxes. 
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
                              [N, 4] when code_type is 'encode_center_size'. 
                              This input also can be a 3-D Tensor with shape 
                              [N, M, 4] when code_type is 'decode_center_size'. 
                              Each box is represented as  
                              [xmin, ymin, xmax, ymax]. This tensor can 
                              contain LoD information to represent a batch 
                              of inputs. 
        code_type(string): The code type used with the target box. It can be
                           encode_center_size or decode_center_size
        box_normalized(int): Whether treat the priorbox as a noramlized box.
                             Set true by default.
        name(string): The name of box coder.
        axis(int): Which axis in PriorBox to broadcast for box decode, 
                   for example, if axis is 0 and TargetBox has shape
                   [N, M, 4] and PriorBox has shape [M, 4], then PriorBox
                   will broadcast to [N, M, 4] for decoding. It is only valid
                   when code type is decode_center_size. Set 0 by default. 
X
Xin Pan 已提交
600 601

    Returns:
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        output_box(Variable): When code_type is 'encode_center_size', the 
                              output tensor of box_coder_op with shape 
                              [N, M, 4] representing the result of N target 
                              boxes encoded with M Prior boxes and variances. 
                              When code_type is 'decode_center_size', 
                              N represents the batch size and M represents 
                              the number of deocded boxes.

    Examples:
 
        .. code-block:: python
 
            prior_box = fluid.layers.data(name='prior_box', 
                                          shape=[512, 4], 
                                          dtype='float32',
                                          append_batch_size=False)
            target_box = fluid.layers.data(name='target_box',
                                           shape=[512,81,4],
                                           dtype='float32',
                                           append_batch_size=False)
            output = fluid.layers.box_coder(prior_box=prior_box,
                                            prior_box_var=[0.1,0.1,0.2,0.2],
                                            target_box=target_box,
                                            code_type="decode_center_size",
                                            box_normalized=False,
                                            axis=1)

X
Xin Pan 已提交
629 630 631 632
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
633 634
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
635 636 637 638
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

639 640 641 642 643 644 645 646 647 648 649 650
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
651 652
    helper.append_op(
        type="box_coder",
653 654
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
B
Bai Yifan 已提交
669 670 671 672 673 674 675 676

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            input = fluid.layers.data(name='input', shape=[4, 10, 5, 5],
                                      append_batch_size=False, dtype='float32')
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
677 678 679
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
680
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
681 682 683 684 685 686 687 688 689 690 691 692
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
693 694
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
695 696
                gt_box,
                gt_label,
D
dengkaipeng 已提交
697
                anchors,
698
                anchor_mask,
D
dengkaipeng 已提交
699 700
                class_num,
                ignore_thresh,
701
                downsample_ratio,
702
                gt_score=None,
D
dengkaipeng 已提交
703
                use_label_smooth=True,
D
dengkaipeng 已提交
704 705 706 707 708 709
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
710
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
711 712 713 714
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
715 716
                          N is the batch number and B is the max box number in 
                          an image.
717
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
D
dengkaipeng 已提交
718
                            of [N, B].
D
dengkaipeng 已提交
719
        anchors (list|tuple): ${anchors_comment}
720
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
721 722
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
723
        downsample_ratio (int): ${downsample_ratio_comment}
724
        name (string): the name of yolov3 loss. Default None.
725
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
726
                            of [N, B]. Default None.
727
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
728 729

    Returns:
730
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
731 732 733

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
734 735
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
736
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
737 738 739
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
740
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
741 742

    Examples:
743 744 745
      .. code-block:: python

          x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
746 747 748
          gt_box = fluid.layers.data(name='gt_box', shape=[6, 4], dtype='float32')
          gt_label = fluid.layers.data(name='gt_label', shape=[6], dtype='int32')
          gt_score = fluid.layers.data(name='gt_score', shape=[6], dtype='float32')
749 750
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
751 752
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
753 754
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
755 756 757 758 759
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
760
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
761
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
762
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
763
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
764
    if gt_score is not None and not isinstance(gt_score, Variable):
765
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
766 767
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
768 769
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
770 771 772 773 774
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
775 776 777
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
778 779 780 781 782 783 784

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

785 786 787
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

788 789
    inputs = {
        "X": x,
790 791
        "GTBox": gt_box,
        "GTLabel": gt_label,
792
    }
793
    if gt_score:
794
        inputs["GTScore"] = gt_score
795

D
dengkaipeng 已提交
796 797
    attrs = {
        "anchors": anchors,
798
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
799 800
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
801
        "downsample_ratio": downsample_ratio,
802
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
803 804 805 806
    }

    helper.append_op(
        type='yolov3_loss',
807
        inputs=inputs,
808 809 810 811 812
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
813 814 815 816
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
817
@templatedoc(op_type="yolo_box")
818 819 820 821 822 823 824
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
825 826 827 828 829
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
830
        img_size (Variable): ${img_size_comment}
D
dengkaipeng 已提交
831 832 833 834
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
835
        name (string): the name of yolo box layer. Default None.
D
dengkaipeng 已提交
836 837

    Returns:
D
dengkaipeng 已提交
838
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
839 840
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
841 842 843 844 845 846 847 848

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
849

D
dengkaipeng 已提交
850 851
    .. code-block:: python

X
xiaoting 已提交
852
        import paddle.fluid as fluid
D
dengkaipeng 已提交
853 854
        x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
855
        loss = fluid.layers.yolo_box(x=x, img_size=608, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
856 857 858 859 860
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
861 862 863
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
864
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
865
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
866
    if not isinstance(class_num, int):
867
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
868
    if not isinstance(conf_thresh, float):
869
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
870 871 872 873 874 875 876

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
877
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
878 879 880 881 882
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
883 884 885 886
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
887 888 889 890 891 892 893 894
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
895
@templatedoc()
896 897
def detection_map(detect_res,
                  label,
898 899
                  class_num,
                  background_label=0,
900 901
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
902 903 904 905
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

934
            from fluid.layers import detection
X
Xin Pan 已提交
935 936 937 938 939 940 941 942 943 944 945
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

946
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
947
    """
948 949
    helper = LayerHelper("detection_map", **locals())

950
    def __create_var(type):
X
Xin Pan 已提交
951
        return helper.create_variable_for_type_inference(dtype=type)
952 953 954 955 956 957 958 959 960 961 962 963

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

964 965 966 967 968
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
969
            'HasState': has_state,
970 971 972 973 974 975 976 977 978 979 980 981 982
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
983 984
            'ap_type': ap_version,
            'class_num': class_num,
985
        })
986
    return map_out
987 988


989 990 991 992
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
993
    """
Y
yuyang18 已提交
994 995
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
996
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
997 998 999 1000 1001 1002 1003 1004
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1005 1006 1007
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1008

Y
yuyang18 已提交
1009
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1010 1011 1012
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1013 1014 1015
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1016 1017 1018 1019 1020
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
1021 1022 1023 1024 1025 1026
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
1027
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
1028
           'bipartite' or 'per_prediction'. [default 'bipartite'].
1029 1030
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1031
            on the maximum distance, 0.5 by default.
1032
    Returns:
Y
yuyang18 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1056 1057
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1058 1059 1060
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1061 1062 1063
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1064 1065 1066 1067
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1085

1086 1087 1088 1089 1090
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1091

1092
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1093

1094 1095 1096
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1097

1098 1099
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1100

1101
        Otherwise,
C
chengduoZH 已提交
1102

1103 1104
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1105

1106
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1107

1108 1109
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
1110

1111
    .. code-block:: text
C
chengduoZH 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
1128 1129 1130 1131 1132
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
1133 1134 1135 1136 1137 1138
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            import paddle.fluid as fluid
            x = fluid.layers.data(
                name='x',
                shape=[4, 20, 4],
                dtype='float',
                lod_level=1,
                append_batch_size=False)
            matched_id = fluid.layers.data(
                name='indices',
                shape=[8, 20],
                dtype='int32',
                append_batch_size=False)
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1155 1156
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1157 1158
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1186
             normalize=True,
1187 1188
             sample_size=None):
    """
Y
yuyang18 已提交
1189
    **Multi-box loss layer for object detection algorithm of SSD**
1190 1191 1192 1193 1194 1195 1196

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1197
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1198

1199
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1200

1201
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1202

1203
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1204

1205
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1206

1207
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1208

1209 1210
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1211

1212
    4. Assign classification and regression targets
Y
yuyang18 已提交
1213

1214
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1215

1216
      4.2. Assign regression targets.
Y
yuyang18 已提交
1217

1218
      4.3. Assign classification targets.
Y
yuyang18 已提交
1219

1220
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1221

1222
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1223

1224
      5.1 Compute localization loss.
Y
yuyang18 已提交
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
1249
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
1250
        neg_overlap (float): The negative overlap upper bound for the unmatched
1251
            predictions. Use only when mining_type is 'max_negative',
1252 1253 1254 1255
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
1256
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
1257 1258
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1259
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1260
            of output locations, True by default.
1261 1262
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1263 1264

    Returns:
Y
yuyang18 已提交
1265 1266
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
1267 1268

    Raises:
Y
yuyang18 已提交
1269 1270
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1290 1291 1292 1293 1294 1295 1296
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1297
    conf_shape = nn.shape(confidence)
1298 1299

    def __reshape_to_2d(var):
1300
        return nn.flatten(x=var, axis=2)
1301 1302 1303 1304 1305

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1306 1307
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1308 1309 1310

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1311 1312
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1313
    gt_label.stop_gradient = True
1314 1315 1316 1317 1318 1319 1320
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1321
    target_label.stop_gradient = True
1322 1323
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1324
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1325
    actual_shape.stop_gradient = True
1326
    conf_loss = nn.reshape(
1327
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
1328
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1329
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1330
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1331 1332
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1347
            'neg_dist_threshold': neg_overlap,
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1373

1374 1375 1376 1377
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1378 1379 1380 1381
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1382 1383 1384 1385 1386 1387 1388 1389
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1390 1391 1392 1393
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1394 1395
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1396
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1397
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
1398 1399 1400 1401 1402
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1403
    return loss
C
chengduoZH 已提交
1404 1405


1406 1407 1408 1409
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1410
              aspect_ratios=[1.],
1411 1412 1413 1414 1415
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1416 1417
              name=None,
              min_max_aspect_ratios_order=False):
1418
    """
Q
update  
qiaolongfei 已提交
1419
    **Prior Box Operator**
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1431
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1432 1433
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1434 1435
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1436 1437 1438 1439
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1440
       step(list|turple): Prior boxes step across width and height, If
1441
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1442 1443
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1444 1445
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1446
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1447
            in order of [min, max, aspect_ratios], which is consistent with
1448 1449 1450
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1451 1452

    Returns:
Q
update  
qiaolongfei 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1466 1467 1468 1469


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1470

R
ruri 已提交
1471 1472
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
Q
update  
qiaolongfei 已提交
1473
            box, var = fluid.layers.prior_box(
R
ruri 已提交
1474
                input=input,
Q
update  
qiaolongfei 已提交
1475 1476 1477 1478
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1479 1480 1481 1482
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1498 1499 1500 1501 1502 1503 1504 1505
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1506 1507
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1508 1509
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1510 1511
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1512 1513
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1514 1515
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1537
                      flatten_to_2d=False,
R
ruri 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|turple): Prior boxes step across width and height, If
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1574 1575
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1576 1577 1578 1579 1580 1581
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1582 1583 1584 1585
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1586 1587

        variances: the expanded variances of PriorBox.
1588 1589 1590 1591
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1592 1593 1594 1595 1596


    Examples:
        .. code-block:: python

R
ruri 已提交
1597 1598
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
R
ruri 已提交
1599
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1600
                input=input,
R
ruri 已提交
1601
                image=images,
1602 1603 1604 1605 1606
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1637 1638 1639 1640
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1656
def multi_box_head(inputs,
C
chengduoZH 已提交
1657 1658
                   image,
                   base_size,
C
chengduoZH 已提交
1659
                   num_classes,
C
chengduoZH 已提交
1660
                   aspect_ratios,
1661 1662
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1663 1664
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1665 1666 1667 1668
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1669 1670
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1671
                   clip=False,
C
chengduoZH 已提交
1672
                   kernel_size=1,
C
chengduoZH 已提交
1673
                   pad=0,
C
chengduoZH 已提交
1674
                   stride=1,
1675 1676
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1677
    """
C
chengduoZH 已提交
1678 1679
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1680
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1681
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1682 1683

    Args:
1684
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1685
            of all Variables is NCHW.
C
chengduoZH 已提交
1686 1687
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1688 1689
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1712
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1713 1714 1715 1716 1717 1718
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1719
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1720
            in order of [min, max, aspect_ratios], which is consistent with
1721 1722 1723
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1724 1725

    Returns:
Q
update  
qiaolongfei 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1741

C
chengduoZH 已提交
1742 1743 1744

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
          import paddle.fluid as fluid

          images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
          conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
          conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
          conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
          conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
          conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
          conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')

Q
update  
qiaolongfei 已提交
1756
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
1757
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1767 1768
    """

C
chengduoZH 已提交
1769
    def _reshape_with_axis_(input, axis=1):
1770
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1771
        return out
1772

1773 1774
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1775

C
chengduoZH 已提交
1776 1777 1778 1779
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1780 1781
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1782

C
chengduoZH 已提交
1783 1784 1785 1786 1787
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1788
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1789 1790 1791
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1792
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1793 1794 1795 1796 1797
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1821 1822
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1823 1824
    box_results = []
    var_results = []
C
chengduoZH 已提交
1825 1826
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1827 1828
        max_size = max_sizes[i]

1829
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1830
            min_size = [min_size]
C
chengduoZH 已提交
1831 1832
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1833 1834 1835 1836

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1837
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1838
                aspect_ratio = [aspect_ratio]
1839
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1840

1841
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1842 1843
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1844 1845 1846 1847 1848

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1849

1850
        # get loc
Y
Yuan Gao 已提交
1851
        num_loc_output = num_boxes * 4
1852
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1853
            input=input,
1854 1855 1856 1857 1858
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1859
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1860
        compile_shape = [
1861
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1862
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1863
        ]
1864 1865 1866
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1867
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1868

1869
        # get conf
C
chengduoZH 已提交
1870
        num_conf_output = num_boxes * num_classes
1871
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1872
            input=input,
1873 1874 1875 1876
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1877
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1878 1879
        new_shape = [0, -1, num_classes]
        compile_shape = [
1880 1881 1882
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1883
        ]
1884 1885 1886 1887
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1888
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1889

C
chengduoZH 已提交
1890 1891 1892
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1893 1894
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1904 1905
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1906

1907 1908
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1909
    return mbox_locs_concat, mbox_confs_concat, box, var
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
H
haowang101779990 已提交
1930 1931
                                       given in absolute pixels e.g. [64., 128., 256., 512.].
                                       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
1932
       aspect_ratios(list|tuple|float): The height / width ratios of generated
H
haowang101779990 已提交
1933
                                        anchors, e.g. [0.5, 1.0, 2.0].
1934
       variance(list|tuple): The variances to be used in box regression deltas.
H
haowang101779990 已提交
1935 1936
                             Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
1937 1938 1939 1940
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
H
haowang101779990 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        Anchors(Variable),Variances(Variable):  
        
              two variables:
        
              - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
                H is the height of input, W is the width of input, \
                num_anchors is the box count of each position.  \
                Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. 
              - Variances(Variable): The expanded variances of anchors \
                with a layout of [H, W, num_priors, 4]. \
                H is the height of input, W is the width of input \
                num_anchors is the box count of each position. \
                Each variance is in (xcenter, ycenter, w, h) format.
1954 1955 1956 1957 1958 1959


    Examples:

        .. code-block:: python

J
jerrywgz 已提交
1960 1961
            conv1 = fluid.layers.data(name='conv1', shape=[48, 16, 16], dtype='float32')
            anchor, var = fluid.layers.anchor_generator(
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1995 1996
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1997 1998 1999 2000 2001 2002 2003 2004 2005
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2006 2007


W
whs 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
S
SunGaofeng 已提交
2028
        transformed_width (integer): The width of transformed output.
W
whs 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2038
            import paddle.fluid as fluid
2039

S
SunGaofeng 已提交
2040 2041 2042
            x = fluid.layers.data(name='x', shape=[256, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[8], lod_level=1, dtype='float32')
            out = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2043 2044 2045
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2046
    out = helper.create_variable_for_type_inference(dtype)
2047 2048
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2049 2050 2051 2052
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2053 2054 2055 2056 2057
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
            "Out2InWeights": out2in_w
        },
W
whs 已提交
2058 2059 2060 2061 2062 2063 2064 2065
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


2066 2067
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2068
                             is_crowd,
2069
                             gt_boxes,
2070
                             im_info,
2071 2072 2073 2074 2075 2076
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2077 2078
                             class_nums=None,
                             use_random=True):
2079
    """
2080
    ** Generate Proposal Labels of Faster-RCNN **
B
buxingyuan 已提交
2081
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2082
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2083 2084 2085

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2086
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2087 2088
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2089
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2090
    then we apply random sampling to make sure
B
buxingyuan 已提交
2091
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
B
Bai Yifan 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            rpn_rois = fluid.layers.data(name='rpn_rois', shape=[2, 4],
                           append_batch_size=False, dtype='float32')
            gt_classes = fluid.layers.data(name='gt_classes', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[8, 4],
                           append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[10, 3],
                           append_batch_size=False, dtype='float32')
            rois, labels_int32, bbox_targets, bbox_inside_weights,
            bbox_outside_weights = fluid.layers.generate_proposal_labels(
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2131 2132 2133 2134
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2144 2145 2146 2147 2148 2149

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2150
            'IsCrowd': is_crowd,
2151
            'GtBoxes': gt_boxes,
2152
            'ImInfo': im_info
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2168 2169
            'class_nums': class_nums,
            'use_random': use_random
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

2261 2262
          import paddle.fluid as fluid

2263 2264 2265 2266 2267 2268 2269 2270
          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
2271
          # rois, roi_labels can be the output of
2272
          # fluid.layers.generate_proposal_labels.
2273 2274 2275 2276
          rois = fluid.layers.data(name="rois", shape=[4],
              dtype="float32", lod_level=1)
          roi_labels = fluid.layers.data(name="roi_labels", shape=[1],
              dtype="int32", lod_level=1)
2277 2278 2279 2280 2281 2282
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2283
              labels_int32=roi_labels,
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2333 2334
    **Generate proposal Faster-RCNN**

2335 2336 2337 2338
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2339 2340 2341 2342
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2343 2344
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2345 2346 2347 2348 2349 2350
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2351 2352 2353 2354 2355 2356 2357 2358 2359
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2360
            between origin image size and the size of feature map.
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
2372
        nms_thresh(float): Threshold in NMS, 0.5 by default.
2373 2374 2375 2376
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
B
Bai Yifan 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
            scores = fluid.layers.data(name='scores', shape=[2, 4, 5, 5],
                         append_batch_size=False, dtype='float32')
            bbox_deltas = fluid.layers.data(name='bbox_deltas', shape=[2, 16, 5, 5],
                         append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[2, 3],
                         append_batch_size=False, dtype='float32')
            anchors = fluid.layers.data(name='anchors', shape=[5, 5, 4, 4],
                         append_batch_size=False, dtype='float32')
            variances = fluid.layers.data(name='variances', shape=[5, 5, 10, 4],
                         append_batch_size=False, dtype='float32')
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2395 2396 2397
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2398 2399 2400 2401
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2424 2425


J
jerrywgz 已提交
2426
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2427 2428
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2429
    For each input box, The formula is given as follows:
2430 2431 2432
        
    .. code-block:: text

J
jerrywgz 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2444 2445

    Args:
J
jerrywgz 已提交
2446
        input(variable): The input box, the last dimension is 4.
2447 2448 2449 2450
        im_info(variable): The information of image with shape [N, 3] with 
                            layout (height, width, scale). height and width
                            is the input size and scale is the ratio of input
                            size and original size.
J
jerrywgz 已提交
2451 2452 2453 2454
        name (str): The name of this layer. It is optional.
    
    Returns:
        Variable: The cliped tensor variable.
2455
        
J
jerrywgz 已提交
2456 2457
    Examples:
        .. code-block:: python
2458
        
J
jerrywgz 已提交
2459
            boxes = fluid.layers.data(
J
jerrywgz 已提交
2460
                name='boxes', shape=[8, 4], dtype='float32', lod_level=1)
J
jerrywgz 已提交
2461 2462
            im_info = fluid.layers.data(name='im_info', shape=[3])
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2463
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2464 2465 2466
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2467
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2468
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2469
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2470

2471 2472
    return output

J
jerrywgz 已提交
2473

J
jerrywgz 已提交
2474 2475 2476 2477 2478
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2479
                   nms_threshold=0.3,
J
jerrywgz 已提交
2480 2481
                   normalized=True,
                   nms_eta=1.,
2482 2483
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2484
    """
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2546 2547 2548 2549
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2550

2551

2552 2553 2554
    Examples:
        .. code-block:: python

2555

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2588 2589

    return output
2590 2591 2592 2593 2594 2595 2596 2597 2598


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
J
jerrywgz 已提交
2599 2600 2601 2602 2603 2604
    In Feature Pyramid Networks (FPN) models, it is needed to distribute all 
    proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order
    of proposals, we return an array which indicates the original index of rois
    in current proposals. To compute FPN level for each roi, the formula is 
    given as follows:
2605
    
J
jerrywgz 已提交
2606
    .. math::
2607

J
jerrywgz 已提交
2608
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
2609

J
jerrywgz 已提交
2610 2611 2612
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
2613 2614

    Args:
J
jerrywgz 已提交
2615
        fpn_rois(variable): The input fpn_rois, the second dimension is 4.
2616 2617 2618 2619 2620 2621
        min_level(int): The lowest level of FPN layer where the proposals come 
                        from.
        max_level(int): The highest level of FPN layer where the proposals
                        come from.
        refer_level(int): The referring level of FPN layer with specified scale.
        refer_scale(int): The referring scale of FPN layer with specified level.
J
jerrywgz 已提交
2622 2623
        name(str|None): The name of this operator.        

2624
    Returns:
J
jerrywgz 已提交
2625 2626 2627 2628 2629
        tuple: 
               A tuple(multi_rois, restore_ind) is returned. The multi_rois is 
               a list of segmented tensor variables. The restore_ind is a 2D 
               Tensor with shape [N, 1], N is the number of total rois. It is
               used to restore the order of fpn_rois.
2630 2631 2632 2633 2634 2635 2636

    Examples:
        .. code-block:: python

            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
2637 2638 2639
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
2640 2641 2642 2643 2644
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
2645
    dtype = helper.input_dtype('fpn_rois')
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
2663 2664


2665
@templatedoc()
J
jerrywgz 已提交
2666 2667 2668 2669 2670 2671
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
2672 2673 2674 2675 2676 2677 2678
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
2679
        box_clip(${box_clip_type}): ${box_clip_comment}
J
jerrywgz 已提交
2680
        name(str|None): The name of this operator
2681
    Returns:
J
jerrywgz 已提交
2682 2683 2684 2685 2686 2687 2688
        decode_box(Variable), output_assign_box(Variable):

            two variables:

            - decode_box(${decode_box_type}): ${decode_box_comment}
            - output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}

2689 2690 2691
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
2692
            pb = fluid.layers.data(
J
jerrywgz 已提交
2693
                name='prior_box', shape=[4], dtype='float32')
J
jerrywgz 已提交
2694
            pbv = fluid.layers.data(
J
jerrywgz 已提交
2695 2696
                name='prior_box_var', shape=[4], 
                dtype='float32', append_batch_size=False)
J
jerrywgz 已提交
2697
            loc = fluid.layers.data(
J
jerrywgz 已提交
2698
                name='target_box', shape=[4*81], dtype='float32')
J
jerrywgz 已提交
2699
            scores = fluid.layers.data(
J
jerrywgz 已提交
2700
                name='scores', shape=[81], dtype='float32')
J
jerrywgz 已提交
2701
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
2702
                pb, pbv, loc, scores, 4.135)
2703 2704 2705 2706

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
2707
    decoded_box = helper.create_variable_for_type_inference(
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
2722
            "DecodeBox": decoded_box,
2723 2724
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
2725
    return decoded_box, output_assign_box
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
    Concat multi-level RoIs (Region of Interest) and select N RoIs 
    with respect to multi_scores. This operation performs the following steps:

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
        multi_ros(list): List of RoIs to collect
        multi_scores(list): List of scores
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
        name(str|None): A name for this layer(optional)
        
    Returns:
        Variable: Output variable of selected RoIs. 

    Examples:
        .. code-block:: python
           
            multi_rois = []
            multi_scores = []
            for i in range(4):
                multi_rois.append(fluid.layers.data(
                    name='roi_'+str(i), shape=[4], dtype='float32', lod_level=1))
            for i in range(4):
                multi_scores.append(fluid.layers.data(
                    name='score_'+str(i), shape=[1], dtype='float32', lod_level=1))

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois