detection.py 84.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34
    'prior_box',
R
ruri 已提交
35
    'density_prior_box',
C
chengduoZH 已提交
36
    'multi_box_head',
37 38 39 40
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
41
    'detection_map',
Y
Yuan Gao 已提交
42
    'rpn_target_assign',
43
    'anchor_generator',
W
whs 已提交
44
    'roi_perspective_transform',
45
    'generate_proposal_labels',
46
    'generate_proposals',
47
    'generate_mask_labels',
48 49
    'iou_similarity',
    'box_coder',
B
Bai Yifan 已提交
50
    'polygon_box_transform',
D
dengkaipeng 已提交
51
    'yolov3_loss',
J
jerrywgz 已提交
52
    'multiclass_nms',
C
chengduoZH 已提交
53
]
54 55


56 57
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
58
                      anchor_box,
59
                      anchor_var,
60 61 62
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
63
                      rpn_batch_size_per_im=256,
64 65
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
66
                      rpn_positive_overlap=0.7,
67 68
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
69
    """
H
haowang101779990 已提交
70
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
88
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
89 90 91
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
92 93 94
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
95 96 97 98 99 100
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
101 102
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
103
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
104 105
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
106 107 108
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
109
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
110 111 112
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
113 114 115 116 117 118 119 120 121
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
122
        tuple:
Y
Yuan Gao 已提交
123
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
124 125
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
126 127 128 129 130 131 132
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
133
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
134 135
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
136 137 138 139

    Examples:
        .. code-block:: python

H
haowang101779990 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
            bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
                              append_batch_size=False, dtype='float32')
            cls_logits = layers.data(name='cls_logits', shape=[100, 1],
                              append_batch_size=False, dtype='float32')
            anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                              append_batch_size=False, dtype='float32')
            gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                             append_batch_size=False, dtype='float32')
            loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
                fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                              cls_logits=cls_logits,
                                              anchor_box=anchor_box,
                                              gt_boxes=gt_boxes)

Y
Yuan Gao 已提交
154 155 156
    """

    helper = LayerHelper('rpn_target_assign', **locals())
157
    # Assign target label to anchors
J
jerrywgz 已提交
158 159 160 161 162 163 164
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
165 166
    helper.append_op(
        type="rpn_target_assign",
167 168 169 170 171 172
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
173 174 175
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
176
            'TargetLabel': target_label,
J
jerrywgz 已提交
177
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
178
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
179 180 181
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
182
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
183 184
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
185 186
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
187 188
        })

189 190 191 192
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
193
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
194

195 196 197 198
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
199

J
jerrywgz 已提交
200
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
201 202


Y
Yuan Gao 已提交
203 204
def detection_output(loc,
                     scores,
205 206 207 208 209 210 211 212 213
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
214
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
215

216 217
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
218

219 220 221 222 223 224
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
225 226 227 228 229 230

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
231 232 233 234
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
257 258
        Variable:

259
            The detection outputs is a LoDTensor with shape [No, 6].
260 261 262 263 264 265
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
J
jerrywgz 已提交
266
            LoD will be set to {1}, and output tensor only contains one
267
            value, which is -1.
J
jerrywgz 已提交
268 269
            (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}.)
270 271 272 273

    Examples:
        .. code-block:: python

274
            pb = layers.data(name='prior_box', shape=[10, 4],
275
                         append_batch_size=False, dtype='float32')
276
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
277
                          append_batch_size=False, dtype='float32')
278
            loc = layers.data(name='target_box', shape=[2, 21, 4],
279
                          append_batch_size=False, dtype='float32')
280
            scores = layers.data(name='scores', shape=[2, 21, 10],
281
                          append_batch_size=False, dtype='float32')
282
            nmsed_outs = fluid.layers.detection_output(scores=scores,
283 284 285 286 287
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
288 289 290 291 292
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
293
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
294
    scores = nn.transpose(scores, perm=[0, 2, 1])
295
    scores.stop_gradient = True
X
Xin Pan 已提交
296 297
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
298 299 300 301 302 303 304 305 306 307 308 309 310
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
311
    nmsed_outs.stop_gradient = True
312
    return nmsed_outs
C
chengduoZH 已提交
313 314


X
Xin Pan 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
329
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
              name=None):
    """
    ${comment}

    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        code_type(${code_type_type}): ${code_type_comment}
        box_normalized(${box_normalized_type}): ${box_normalized_comment}

    Returns:
        output_box(${output_box_type}): ${output_box_comment}
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
366 367
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

    helper.append_op(
        type="box_coder",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box
        },
        attrs={"code_type": code_type,
               "box_normalized": box_normalized},
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
398
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
399 400 401 402 403 404 405 406 407 408 409 410
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
411 412 413
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
                gtbox,
D
dengkaipeng 已提交
414
                gtlabel,
D
dengkaipeng 已提交
415
                anchors,
416
                anchor_mask,
D
dengkaipeng 已提交
417 418
                class_num,
                ignore_thresh,
419
                downsample,
D
dengkaipeng 已提交
420 421 422 423 424 425
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
D
dengkaipeng 已提交
426 427 428 429 430 431 432
        gtbox (Variable): groud truth boxes, should be in shape of [N, B, 4],
                          in the third dimenstion, x, y, w, h should be stored 
                          and x, y, w, h should be relative value of input image.
                          N is the batch number and B is the max box number in 
                          an image.
        gtlabel (Variable): class id of ground truth boxes, shoud be ins shape
                            of [N, B].
D
dengkaipeng 已提交
433
        anchors (list|tuple): ${anchors_comment}
434
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
435 436
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
437
        downsample (int): ${downsample_comment}
D
dengkaipeng 已提交
438 439 440 441 442 443 444 445
        name (string): the name of yolov3 loss

    Returns:
        Variable: A 1-D tensor with shape [1], the value of yolov3 loss

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
        TypeError: Input gtbox of yolov3_loss must be Variable"
D
dengkaipeng 已提交
446
        TypeError: Input gtlabel of yolov3_loss must be Variable"
D
dengkaipeng 已提交
447 448 449 450 451 452 453
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number

    Examples:
    .. code-block:: python

D
dengkaipeng 已提交
454 455 456
        x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
        gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
        gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
457 458
        anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
        anchors = [0, 1, 2]
D
dengkaipeng 已提交
459 460 461 462 463 464 465 466 467
        loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
                                        anchors=anchors, ignore_thresh=0.5)
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
    if not isinstance(gtbox, Variable):
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
D
dengkaipeng 已提交
468 469
    if not isinstance(gtlabel, Variable):
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
D
dengkaipeng 已提交
470 471
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
472 473
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    attrs = {
        "anchors": anchors,
488
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
489 490
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
491
        "downsample": downsample,
D
dengkaipeng 已提交
492 493 494 495
    }

    helper.append_op(
        type='yolov3_loss',
D
dengkaipeng 已提交
496 497 498
        inputs={"X": x,
                "GTBox": gtbox,
                "GTLabel": gtlabel},
D
dengkaipeng 已提交
499 500 501 502 503
        outputs={'Loss': loss},
        attrs=attrs)
    return loss


X
Xin Pan 已提交
504
@templatedoc()
505 506
def detection_map(detect_res,
                  label,
507 508
                  class_num,
                  background_label=0,
509 510
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
511 512 513 514
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
556 557
    helper = LayerHelper("detection_map", **locals())

558
    def __create_var(type):
X
Xin Pan 已提交
559
        return helper.create_variable_for_type_inference(dtype=type)
560 561 562 563 564 565 566 567 568 569 570 571

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

572 573 574 575 576
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
577
            'HasState': has_state,
578 579 580 581 582 583 584 585 586 587 588 589 590
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
591 592
            'ap_type': ap_version,
            'class_num': class_num,
593
        })
594
    return map_out
595 596


597 598 599 600
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
601
    """
Y
yuyang18 已提交
602 603
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
604
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
605 606 607 608 609 610 611 612
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
613 614 615
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
616

Y
yuyang18 已提交
617
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
618 619 620
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
621 622 623
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

624 625 626 627 628
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
629 630 631 632 633 634
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
635
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
636
           'bipartite' or 'per_prediction'. [default 'bipartite'].
637 638
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
639
            on the maximum distance, 0.5 by default.
640
    Returns:
Y
yuyang18 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
664 665
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
666 667 668
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
669 670 671
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
672 673 674 675
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
693

694 695 696 697 698
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
699

700
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
701

702 703 704
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
705

706 707
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
708

709
        Otherwise,
C
chengduoZH 已提交
710

711 712
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
713

714
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
715

716 717
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
718

719
    .. code-block:: text
C
chengduoZH 已提交
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
736 737 738 739 740
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
741 742 743 744 745 746 747 748 749 750 751
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
752 753
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
754 755
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
783
             normalize=True,
784 785
             sample_size=None):
    """
Y
yuyang18 已提交
786
    **Multi-box loss layer for object detection algorithm of SSD**
787 788 789 790 791 792 793

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
794
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
795

796
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
797

798
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
799

800
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
801

802
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
803

804
      2.2. Compute confidence loss.
Y
yuyang18 已提交
805

806 807
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
808

809
    4. Assign classification and regression targets
Y
yuyang18 已提交
810

811
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
812

813
      4.2. Assign regression targets.
Y
yuyang18 已提交
814

815
      4.3. Assign classification targets.
Y
yuyang18 已提交
816

817
    5. Compute the overall objective loss.
Y
yuyang18 已提交
818

819
      5.1 Compute confidence loss.
Y
yuyang18 已提交
820

821
      5.1 Compute localization loss.
Y
yuyang18 已提交
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
846
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
847
        neg_overlap (float): The negative overlap upper bound for the unmatched
848
            predictions. Use only when mining_type is 'max_negative',
849 850 851 852
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
853
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
854 855
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
856
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
857
            of output locations, True by default.
858 859
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
860 861

    Returns:
Y
yuyang18 已提交
862 863
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
864 865

    Raises:
Y
yuyang18 已提交
866 867
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
887 888 889 890 891 892 893
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
894
    conf_shape = nn.shape(confidence)
895 896

    def __reshape_to_2d(var):
897
        return nn.flatten(x=var, axis=2)
898 899 900 901 902

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
903 904
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
905 906 907

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
908 909
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
910
    gt_label.stop_gradient = True
911 912 913 914 915 916 917
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
918
    target_label.stop_gradient = True
919 920
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
921
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
922
    actual_shape.stop_gradient = True
923
    conf_loss = nn.reshape(
924
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
925
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
926
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
927
    dtype = matched_indices.dtype
X
Xin Pan 已提交
928 929
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
930 931 932 933 934 935 936 937 938 939 940 941 942 943
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
944
            'neg_dist_threshold': neg_overlap,
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
970

971 972 973 974
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

975 976 977 978
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

979 980 981 982 983 984 985 986
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

987 988 989 990
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

991 992
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
993
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
994
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
995 996 997 998 999
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1000
    return loss
C
chengduoZH 已提交
1001 1002


1003 1004 1005 1006
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1007
              aspect_ratios=[1.],
1008 1009 1010 1011 1012
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1013 1014
              name=None,
              min_max_aspect_ratios_order=False):
1015
    """
Q
update  
qiaolongfei 已提交
1016
    **Prior Box Operator**
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1028
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1029 1030
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1031 1032
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1033 1034 1035 1036
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1037
       step(list|turple): Prior boxes step across width and height, If
1038
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1039 1040
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1041 1042
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1043
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1044
            in order of [min, max, aspect_ratios], which is consistent with
1045 1046 1047
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1048 1049

    Returns:
Q
update  
qiaolongfei 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1063 1064 1065 1066


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1067 1068 1069 1070 1071 1072 1073

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1074 1075 1076 1077
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1093 1094 1095 1096 1097 1098 1099 1100
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1101 1102
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1103 1104
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1105 1106
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1107 1108
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1109 1110
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1132
                      flatten_to_2d=False,
R
ruri 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|turple): Prior boxes step across width and height, If
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1169 1170
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1171 1172 1173 1174 1175 1176
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1177 1178 1179 1180
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1181 1182

        variances: the expanded variances of PriorBox.
1183 1184 1185 1186
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1187 1188 1189 1190 1191 1192 1193 1194


    Examples:
        .. code-block:: python

            box, var = fluid.layers.density_prior_box(
                input=conv1,
                image=images,
1195 1196 1197 1198 1199
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1230 1231 1232 1233
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1249
def multi_box_head(inputs,
C
chengduoZH 已提交
1250 1251
                   image,
                   base_size,
C
chengduoZH 已提交
1252
                   num_classes,
C
chengduoZH 已提交
1253
                   aspect_ratios,
1254 1255
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1256 1257
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1258 1259 1260 1261
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1262 1263
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1264
                   clip=False,
C
chengduoZH 已提交
1265
                   kernel_size=1,
C
chengduoZH 已提交
1266
                   pad=0,
C
chengduoZH 已提交
1267
                   stride=1,
1268 1269
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1270
    """
C
chengduoZH 已提交
1271 1272
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1273
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1274
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1275 1276

    Args:
1277
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1278
            of all Variables is NCHW.
C
chengduoZH 已提交
1279 1280
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1281 1282
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1305
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1306 1307 1308 1309 1310 1311
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1312
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1313
            in order of [min, max, aspect_ratios], which is consistent with
1314 1315 1316
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1317 1318

    Returns:
Q
update  
qiaolongfei 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1334

C
chengduoZH 已提交
1335 1336 1337

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1338 1339

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1350 1351
    """

C
chengduoZH 已提交
1352
    def _reshape_with_axis_(input, axis=1):
1353
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1354
        return out
1355

1356 1357
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1358

C
chengduoZH 已提交
1359 1360 1361 1362
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1363 1364
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1365

C
chengduoZH 已提交
1366 1367 1368 1369 1370
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1371
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1372 1373 1374
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1375
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1376 1377 1378 1379 1380
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1404 1405
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1406 1407
    box_results = []
    var_results = []
C
chengduoZH 已提交
1408 1409
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1410 1411
        max_size = max_sizes[i]

1412
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1413
            min_size = [min_size]
C
chengduoZH 已提交
1414 1415
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1416 1417 1418 1419

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1420
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1421
                aspect_ratio = [aspect_ratio]
1422
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1423

1424
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1425 1426
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1427 1428 1429 1430 1431

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1432

1433
        # get loc
Y
Yuan Gao 已提交
1434
        num_loc_output = num_boxes * 4
1435
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1436
            input=input,
1437 1438 1439 1440 1441
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1442
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1443
        compile_shape = [
1444
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1445
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1446
        ]
1447 1448 1449
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1450
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1451

1452
        # get conf
C
chengduoZH 已提交
1453
        num_conf_output = num_boxes * num_classes
1454
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1455
            input=input,
1456 1457 1458 1459
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1460
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1461 1462
        new_shape = [0, -1, num_classes]
        compile_shape = [
1463 1464 1465
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1466
        ]
1467 1468 1469 1470
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1471
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1472

C
chengduoZH 已提交
1473 1474 1475
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1476 1477
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1487 1488
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1489

1490 1491
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1492
    return mbox_locs_concat, mbox_confs_concat, box, var
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
H
haowang101779990 已提交
1513 1514
                                       given in absolute pixels e.g. [64., 128., 256., 512.].
                                       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
1515
       aspect_ratios(list|tuple|float): The height / width ratios of generated
H
haowang101779990 已提交
1516
                                        anchors, e.g. [0.5, 1.0, 2.0].
1517
       variance(list|tuple): The variances to be used in box regression deltas.
H
haowang101779990 已提交
1518 1519
                             Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
1520 1521 1522 1523
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
H
haowang101779990 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        Anchors(Variable),Variances(Variable):  
        
              two variables:
        
              - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
                H is the height of input, W is the width of input, \
                num_anchors is the box count of each position.  \
                Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. 
              - Variances(Variable): The expanded variances of anchors \
                with a layout of [H, W, num_priors, 4]. \
                H is the height of input, W is the width of input \
                num_anchors is the box count of each position. \
                Each variance is in (xcenter, ycenter, w, h) format.
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1577 1578
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1579 1580 1581 1582 1583 1584 1585 1586 1587
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1588 1589


W
whs 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
        transformed_height (integer): The width of transformed output.
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

            out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1624
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": out},
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1638 1639
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1640
                             is_crowd,
1641
                             gt_boxes,
1642
                             im_info,
1643 1644 1645 1646 1647 1648
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1649 1650
                             class_nums=None,
                             use_random=True):
1651
    """
1652
    ** Generate Proposal Labels of Faster-RCNN **
B
buxingyuan 已提交
1653
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
1654
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
1655 1656 1657

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
1658
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
1659 1660
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
1661
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
1662
    then we apply random sampling to make sure
B
buxingyuan 已提交
1663
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
1683 1684 1685 1686
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1696 1697 1698 1699 1700 1701

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1702
            'IsCrowd': is_crowd,
1703
            'GtBoxes': gt_boxes,
1704
            'ImInfo': im_info
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1720 1721
            'class_nums': class_nums,
            'use_random': use_random
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
          # rois, labels_int32 can be the output of
          # fluid.layers.generate_proposal_labels.
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
              labels_int32=labels_int32,
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
1879 1880
    **Generate proposal Faster-RCNN**

1881 1882 1883 1884
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
1885 1886 1887 1888
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

1889 1890
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
1891 1892 1893 1894 1895 1896
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
1897 1898 1899 1900 1901 1902 1903 1904 1905
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
1906
            between origin image size and the size of feature map.
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
1918
        nms_thresh(float): Threshold in NMS, 0.5 by default.
1919 1920 1921 1922
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
1923 1924 1925
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
1926 1927 1928 1929
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
1952 1953 1954 1955 1956 1957 1958


def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
1959
                   nms_threshold=0.3,
J
jerrywgz 已提交
1960 1961
                   normalized=True,
                   nms_eta=1.,
1962 1963
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
1964
    """
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2026 2027 2028 2029
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

    Examples:
        .. code-block:: python

            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output