detection.py 33.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18
from layer_function_generator import generate_layer_fn
19
from layer_function_generator import autodoc
20
from ..layer_helper import LayerHelper
21 22 23
import tensor
import ops
import nn
C
chengduoZH 已提交
24
import math
25

C
chengduoZH 已提交
26 27
__all__ = [
    'multi_box_head',
28 29 30 31
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
32
    'detection_map',
C
chengduoZH 已提交
33
]
34

35 36 37
__auto__ = [
    'iou_similarity',
    'box_coder',
C
chengduoZH 已提交
38
]
39

40 41 42 43 44
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

45

Y
Yuan Gao 已提交
46 47
def detection_output(loc,
                     scores,
48 49 50 51 52 53 54 55 56
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
57
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
58

59 60 61 62 63 64 65 66 67
    This operation is to get the detection results by performing following
    two steps:
    
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
68 69 70 71 72 73

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
74 75 76 77
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
100 101 102 103 104 105 106 107 108
        Variable: The detection outputs is a LoDTensor with shape [No, 6].
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
109 110 111 112 113 114 115 116

    Examples:
        .. code-block:: python

        pb = layers.data(name='prior_box', shape=[10, 4],
                         append_batch_size=False, dtype='float32')
        pbv = layers.data(name='prior_box_var', shape=[10, 4],
                          append_batch_size=False, dtype='float32')
Y
Yuan Gao 已提交
117
        loc = layers.data(name='target_box', shape=[2, 21, 4],
118 119 120 121 122 123 124 125 126
                          append_batch_size=False, dtype='float32')
        scores = layers.data(name='scores', shape=[2, 21, 10],
                          append_batch_size=False, dtype='float32')
        nmsed_outs = fluid.layers.detection_output(scores=scores,
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
127 128 129 130 131
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
132

133 134 135 136
    old_shape = scores.shape
    scores = ops.reshape(x=scores, shape=(-1, old_shape[-1]))
    scores = ops.softmax(x=scores)
    scores = ops.reshape(x=scores, shape=old_shape)
Y
Yuan Gao 已提交
137
    scores = nn.transpose(scores, perm=[0, 2, 1])
138 139

    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
140 141 142 143 144 145 146 147 148 149 150 151 152 153
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
    return nmsed_outs
C
chengduoZH 已提交
154 155


156 157 158
@autodoc()
def detection_map(detect_res,
                  label,
159 160
                  class_num,
                  background_label=0,
161 162
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
163 164 165 166
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
167 168
    helper = LayerHelper("detection_map", **locals())

169 170 171 172 173 174 175 176 177 178 179 180 181 182
    def __create_var(type):
        return helper.create_tmp_variable(dtype=type)

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

183 184 185 186 187
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
188
            'HasState': has_state,
189 190 191 192 193 194 195 196 197 198 199 200 201
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
202 203
            'ap_type': ap_version,
            'class_num': class_num,
204
        })
205
    return map_out
206 207


208 209 210 211
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
212 213 214 215 216 217 218 219 220 221
    """
    **Bipartite matchint operator**

    This operator is a greedy bipartite matching algorithm, which is used to
    obtain the matching with the maximum distance based on the input
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
    find the matched column for each row, also can find the matched row for
    each column. And this operator only calculate matched indices from column
    to row. For each instance, the number of matched indices is the number of
    of columns of the input ditance matrix.
C
chengduoZH 已提交
222

223 224 225 226 227
    There are two outputs to save matched indices and distance.
    A simple description, this algothrim matched the best (maximum distance)
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242
    Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
            dist_matirx[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better macthing the pairs are. Please note,
            This tensor can contain LoD information to represent a batch of
            inputs. One instance of this batch can contain different numbers of
            entities.
243 244 245 246 247
        match_type(string|None): The type of matching method, should be
           'bipartite' or 'per_prediction', 'bipartite' by defalut.
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
            on the maximum distance, 0.5 by defalut.
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    Returns:
        match_indices(Variable): A 2-D Tensor with shape [N, M] in int type.
            N is the batch size. If match_indices[i][j] is -1, it
            means B[j] does not match any entity in i-th instance.
            Otherwise, it means B[j] is matched to row
            match_indices[i][j] in i-th instance. The row number of
            i-th instance is saved in match_indices[i][j].
        match_distance(Variable): A 2-D Tensor with shape [N, M] in float type.
            N is batch size. If match_indices[i][j] is -1,
            match_distance[i][j] is also -1.0. Otherwise, assumed
            match_distance[i][j] = d, and the row offsets of each instance
            are called LoD. Then match_distance[i][j] = dist_matrix[d+LoD[i]][j].
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
267 268 269 270
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    **Target assigner operator**

    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
290

291 292 293 294 295
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
296

297
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
298

299
    If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
300

301 302
        out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
        out_weight[i][j] = 1.
C
chengduoZH 已提交
303 304 305

    Otherwise,

306 307
        out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][j] = 0.
C
chengduoZH 已提交
308

309
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
310

311 312
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
C
chengduoZH 已提交
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
       out (Variable): The output is a 3D Tensor with shape [N, P, K],
           N and P is the same as they are in `neg_indices`, K is the
           same as it in input of X. If `match_indices[i][j]`.
       out_weight (Variable): The weight for output with the shape of [N, P, 1].
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
364
             normalize=True,
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
             sample_size=None):
    """
    **Multi-box loss layer for object dection algorithm of SSD**

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

    1. Find matched boundding box by bipartite matching algorithm.
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
      1.2 Compute matched boundding box by bipartite matching algorithm.
    2. Compute confidence for mining hard examples
      2.1. Get the target label based on matched indices.
      2.2. Compute confidence loss.
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
    4. Assign classification and regression targets
      4.1. Encoded bbox according to the prior boxes.
      4.2. Assign regression targets.
      4.3. Assign classification targets.
    5. Compute the overall objective loss.
      5.1 Compute confidence loss.
      5.1 Compute localization loss.
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
413
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
414
        neg_overlap (float): The negative overlap upper bound for the unmatched
415
            predictions. Use only when mining_type is 'max_negative',
416 417 418 419
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
420
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
421 422
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
423 424 425 426
        normalize (bool): Whether to normalize the SSD loss by the total number
            of output locations, True by defalut.
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

    Returns:
        Variable: The weighted sum of the localization loss and confidence loss,
            with shape [N * Np, 1], N and Np are the same as they are
            in `location`.

    Raises:
        ValueError: If mining_type is 'hard_example', now only support
            mining type of `max_negative`.

    Examples:
        .. code-block:: python

            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape

    def __reshape_to_2d(var):
        return ops.reshape(x=var, shape=[-1, var.shape[-1]])

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
472 473
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
    gt_label = ops.reshape(x=gt_label, shape=gt_label.shape + (1, ))
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)

    # 3. Mining hard examples
    conf_loss = ops.reshape(x=conf_loss, shape=(num, num_prior))
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
            'neg_dist_threshold': neg_pos_ratio,
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
532

533 534 535 536
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

537 538 539 540
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

541 542 543 544 545 546 547 548
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

549 550 551 552
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

553 554
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
555 556 557 558 559 560 561
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
    loss = ops.reshape(x=loss, shape=[-1, num_prior])
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

562
    return loss
C
chengduoZH 已提交
563 564


C
chengduoZH 已提交
565
def multi_box_head(inputs,
C
chengduoZH 已提交
566 567
                   image,
                   base_size,
C
chengduoZH 已提交
568
                   num_classes,
C
chengduoZH 已提交
569
                   aspect_ratios,
570 571
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
572 573
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
574 575 576 577
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
578 579
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
580
                   clip=False,
C
chengduoZH 已提交
581
                   kernel_size=1,
C
chengduoZH 已提交
582
                   pad=0,
C
chengduoZH 已提交
583
                   stride=1,
C
chengduoZH 已提交
584
                   name=None):
C
chengduoZH 已提交
585
    """
C
chengduoZH 已提交
586
    **Prior_boxes**
C
chengduoZH 已提交
587

C
chengduoZH 已提交
588 589 590 591
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
    section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
592 593

    Args:
594
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
595
            of all Variables is NCHW.
C
chengduoZH 已提交
596 597
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
598 599
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
622
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
623 624 625 626 627 628
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
C
chengduoZH 已提交
629 630

    Returns:
Y
Yuan Gao 已提交
631 632 633 634 635 636 637
        mbox_loc(Variable): The predicted boxes' location of the inputs.
             The layout is [N, H*W*Priors, 4]. where Priors
             is the number of predicted boxes each position of each input.
        mbox_conf(Variable): The predicted boxes' confidence of the inputs.
             The layout is [N, H*W*Priors, C]. where Priors
             is the number of predicted boxes each position of each input
             and C is the number of Classes.
C
chengduoZH 已提交
638 639 640 641 642 643 644
        boxes(Variable): the output prior boxes of PriorBox.
             The layout is [num_priors, 4]. num_priors is the total
             box count of each position of inputs.
        Variances(Variable): the expanded variances of PriorBox.
             The layout is [num_priors, 4]. num_priors is the total
             box count of each position of inputs

C
chengduoZH 已提交
645 646 647

    Examples:
        .. code-block:: python
C
chengduoZH 已提交
648 649 650 651 652 653 654 655 656 657 658
          mbox_locs, mbox_confs, box, var = layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
659 660
    """

C
chengduoZH 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    def _prior_box_(input,
                    image,
                    min_sizes,
                    max_sizes,
                    aspect_ratios,
                    variance,
                    flip=False,
                    clip=False,
                    step_w=0.0,
                    step_h=0.0,
                    offset=0.5,
                    name=None):
        helper = LayerHelper("prior_box", **locals())
        dtype = helper.input_dtype()

676 677 678 679 680 681 682 683 684 685 686 687 688
        attrs = {
            'min_sizes': min_sizes,
            'aspect_ratios': aspect_ratios,
            'variances': variance,
            'flip': flip,
            'clip': clip,
            'step_w': step_w,
            'step_h': step_h,
            'offset': offset
        }
        if len(max_sizes) > 0 and max_sizes[0] > 0:
            attrs['max_sizes'] = max_sizes

C
chengduoZH 已提交
689 690 691 692 693 694 695 696
        box = helper.create_tmp_variable(dtype)
        var = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="prior_box",
            inputs={"Input": input,
                    "Image": image},
            outputs={"Boxes": box,
                     "Variances": var},
697
            attrs=attrs, )
C
chengduoZH 已提交
698 699 700 701 702 703 704 705 706 707 708
        return box, var

    def _reshape_with_axis_(input, axis=1):
        if not (axis > 0 and axis < len(input.shape)):
            raise ValueError("The axis should be smaller than "
                             "the arity of input and bigger than 0.")
        new_shape = [
            -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)])
        ]
        out = ops.reshape(x=input, shape=new_shape)
        return out
709

710 711
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
712

C
chengduoZH 已提交
713 714 715 716
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

717 718
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
719

C
chengduoZH 已提交
720 721 722 723 724
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
725
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
726 727 728 729 730 731 732 733 734
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
758 759
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
760 761
    box_results = []
    var_results = []
C
chengduoZH 已提交
762 763
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
764 765
        max_size = max_sizes[i]

766
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
767
            min_size = [min_size]
C
chengduoZH 已提交
768 769
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
770 771 772 773

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
774
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
775 776
                aspect_ratio = [aspect_ratio]

C
chengduoZH 已提交
777 778 779 780 781 782 783 784 785
        box, var = _prior_box_(input, image, min_size, max_size, aspect_ratio,
                               variance, flip, clip, step_w[i]
                               if step_w else 0.0, step_h[i]
                               if step_w else 0.0, offset)

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
786

787
        # get loc
Y
Yuan Gao 已提交
788
        num_loc_output = num_boxes * 4
789
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
790
            input=input,
791 792 793 794 795
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

796
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
797 798 799 800 801 802
        new_shape = [
            mbox_loc.shape[0],
            mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4
        ]
        mbox_loc_flatten = ops.reshape(mbox_loc, shape=new_shape)
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
803

804
        # get conf
C
chengduoZH 已提交
805
        num_conf_output = num_boxes * num_classes
806
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
807
            input=input,
808 809 810 811
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
812
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
813 814 815 816 817 818
        new_shape = [
            conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] *
            conf_loc.shape[3] / num_classes, num_classes
        ]
        conf_loc_flatten = ops.reshape(conf_loc, shape=new_shape)
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
819

C
chengduoZH 已提交
820 821 822
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
823 824
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
825 826 827 828 829 830 831 832 833
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
834 835
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
836

Y
Yuan Gao 已提交
837
    return mbox_locs_concat, mbox_confs_concat, box, var