detection.py 63.9 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
23 24
from . import tensor
from . import nn
25
from . import ops
M
minqiyang 已提交
26
from ... import compat as cpt
C
chengduoZH 已提交
27
import math
M
minqiyang 已提交
28
import six
29
import numpy
30
from functools import reduce
31

C
chengduoZH 已提交
32
__all__ = [
33
    'prior_box',
C
chengduoZH 已提交
34
    'multi_box_head',
35 36 37 38
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
39
    'detection_map',
Y
Yuan Gao 已提交
40
    'rpn_target_assign',
41
    'anchor_generator',
W
whs 已提交
42
    'roi_perspective_transform',
43
    'generate_proposal_labels',
44
    'generate_proposals',
45 46
    'iou_similarity',
    'box_coder',
B
Bai Yifan 已提交
47
    'polygon_box_transform',
C
chengduoZH 已提交
48
]
49 50


51 52
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
53
                      anchor_box,
54
                      anchor_var,
55 56 57
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
58
                      rpn_batch_size_per_im=256,
59 60
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
61
                      rpn_positive_overlap=0.7,
62 63
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    """
    ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
83
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
84 85 86
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
87 88 89
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
90 91 92 93 94 95
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
96 97
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
98
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
99 100
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
101 102 103
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
104
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
105 106 107
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
108 109 110 111 112 113 114 115 116
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
117
        tuple:
Y
Yuan Gao 已提交
118
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
119 120
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
121 122 123 124 125 126 127
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
128
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
129 130
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
131 132 133 134

    Examples:
        .. code-block:: python

135
        bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
Y
Yuan Gao 已提交
136
                          append_batch_size=False, dtype='float32')
137
        cls_logits = layers.data(name='cls_logits', shape=[100, 1],
Y
Yuan Gao 已提交
138 139 140
                          append_batch_size=False, dtype='float32')
        anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                          append_batch_size=False, dtype='float32')
141
        gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
Y
Yuan Gao 已提交
142
                         append_batch_size=False, dtype='float32')
J
jerrywgz 已提交
143
        loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
144 145
            fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                          cls_logits=cls_logits,
Y
Yuan Gao 已提交
146
                                          anchor_box=anchor_box,
147
                                          gt_boxes=gt_boxes)
Y
Yuan Gao 已提交
148 149 150
    """

    helper = LayerHelper('rpn_target_assign', **locals())
151
    # Assign target label to anchors
J
jerrywgz 已提交
152 153 154 155 156 157 158
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
159 160
    helper.append_op(
        type="rpn_target_assign",
161 162 163 164 165 166
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
167 168 169
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
170
            'TargetLabel': target_label,
J
jerrywgz 已提交
171
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
172
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
173 174 175
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
176
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
177 178
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
179 180
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
181 182
        })

183 184 185 186
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
187
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
188

189 190 191 192
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
193

J
jerrywgz 已提交
194
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
195 196


Y
Yuan Gao 已提交
197 198
def detection_output(loc,
                     scores,
199 200 201 202 203 204 205 206 207
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
208
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
209

210 211
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
212

213 214 215 216 217 218
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
219 220 221 222 223 224

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
225 226 227 228
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
251 252
        Variable:

253
            The detection outputs is a LoDTensor with shape [No, 6].
254 255 256 257 258 259 260 261
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
262 263 264 265

    Examples:
        .. code-block:: python

266
            pb = layers.data(name='prior_box', shape=[10, 4],
267
                         append_batch_size=False, dtype='float32')
268
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
269
                          append_batch_size=False, dtype='float32')
270
            loc = layers.data(name='target_box', shape=[2, 21, 4],
271
                          append_batch_size=False, dtype='float32')
272
            scores = layers.data(name='scores', shape=[2, 21, 10],
273
                          append_batch_size=False, dtype='float32')
274
            nmsed_outs = fluid.layers.detection_output(scores=scores,
275 276 277 278 279
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
280 281 282 283 284
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
285
    compile_shape = scores.shape
G
merge  
gongweibao 已提交
286
    run_shape = nn.shape(scores)
287
    scores = nn.flatten(x=scores, axis=2)
288
    scores = nn.softmax(input=scores)
289
    scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
290
    scores = nn.transpose(scores, perm=[0, 2, 1])
291
    scores.stop_gradient = True
X
Xin Pan 已提交
292 293
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
294 295 296 297 298 299 300 301 302 303 304 305 306
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
307
    nmsed_outs.stop_gradient = True
308
    return nmsed_outs
C
chengduoZH 已提交
309 310


X
Xin Pan 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
325
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
              name=None):
    """
    ${comment}

    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        code_type(${code_type_type}): ${code_type_comment}
        box_normalized(${box_normalized_type}): ${box_normalized_comment}

    Returns:
        output_box(${output_box_type}): ${output_box_comment}
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
362 363
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

    helper.append_op(
        type="box_coder",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box
        },
        attrs={"code_type": code_type,
               "box_normalized": box_normalized},
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
394
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
395 396 397 398 399 400 401 402 403 404 405 406
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


X
Xin Pan 已提交
407
@templatedoc()
408 409
def detection_map(detect_res,
                  label,
410 411
                  class_num,
                  background_label=0,
412 413
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
414 415 416 417
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
459 460
    helper = LayerHelper("detection_map", **locals())

461
    def __create_var(type):
X
Xin Pan 已提交
462
        return helper.create_variable_for_type_inference(dtype=type)
463 464 465 466 467 468 469 470 471 472 473 474

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

475 476 477 478 479
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
480
            'HasState': has_state,
481 482 483 484 485 486 487 488 489 490 491 492 493
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
494 495
            'ap_type': ap_version,
            'class_num': class_num,
496
        })
497
    return map_out
498 499


500 501 502 503
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
504
    """
Y
yuyang18 已提交
505 506
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
507
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
508 509 510 511 512 513 514 515
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
516 517 518
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
519

Y
yuyang18 已提交
520
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
521 522 523
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
524 525 526
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

527 528 529 530 531
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
532 533 534 535 536 537
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
538
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
539
           'bipartite' or 'per_prediction'. [default 'bipartite'].
540 541
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
542
            on the maximum distance, 0.5 by default.
543
    Returns:
Y
yuyang18 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
567 568
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
569 570 571
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
572 573 574
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
575 576 577 578
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
596

597 598 599 600 601
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
602

603
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
604

605 606 607
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
608

609 610
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
611

612
        Otherwise,
C
chengduoZH 已提交
613

614 615
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
616

617
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
618

619 620
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
621

622
    .. code-block:: text
C
chengduoZH 已提交
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
639 640 641 642 643
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
644 645 646 647 648 649 650 651 652 653 654
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
655 656
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
657 658
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
686
             normalize=True,
687 688
             sample_size=None):
    """
Y
yuyang18 已提交
689
    **Multi-box loss layer for object detection algorithm of SSD**
690 691 692 693 694 695 696

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
697
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
698

699
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
700

701
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
702

703
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
704

705
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
706

707
      2.2. Compute confidence loss.
Y
yuyang18 已提交
708

709 710
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
711

712
    4. Assign classification and regression targets
Y
yuyang18 已提交
713

714
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
715

716
      4.2. Assign regression targets.
Y
yuyang18 已提交
717

718
      4.3. Assign classification targets.
Y
yuyang18 已提交
719

720
    5. Compute the overall objective loss.
Y
yuyang18 已提交
721

722
      5.1 Compute confidence loss.
Y
yuyang18 已提交
723

724
      5.1 Compute localization loss.
Y
yuyang18 已提交
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
749
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
750
        neg_overlap (float): The negative overlap upper bound for the unmatched
751
            predictions. Use only when mining_type is 'max_negative',
752 753 754 755
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
756
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
757 758
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
759
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
760
            of output locations, True by default.
761 762
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
763 764

    Returns:
Y
yuyang18 已提交
765 766
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
767 768

    Raises:
Y
yuyang18 已提交
769 770
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
790 791 792 793 794 795 796
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
797
    conf_shape = nn.shape(confidence)
798 799

    def __reshape_to_2d(var):
800
        return nn.flatten(x=var, axis=2)
801 802 803 804 805

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
806 807
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
808 809 810

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
811 812
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
813
    gt_label.stop_gradient = True
814 815 816 817 818 819 820
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
821
    target_label.stop_gradient = True
822 823
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
824
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
825
    actual_shape.stop_gradient = True
826
    conf_loss = nn.reshape(
827
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
828
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
829
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
830
    dtype = matched_indices.dtype
X
Xin Pan 已提交
831 832
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
833 834 835 836 837 838 839 840 841 842 843 844 845 846
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
847
            'neg_dist_threshold': neg_overlap,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
873

874 875 876 877
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

878 879 880 881
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

882 883 884 885 886 887 888 889
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

890 891 892 893
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

894 895
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
896
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
897
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
898 899 900 901 902
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

903
    return loss
C
chengduoZH 已提交
904 905


906 907 908 909
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
910
              aspect_ratios=[1.],
911 912 913 914 915
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
916 917
              name=None,
              min_max_aspect_ratios_order=False):
918
    """
Q
update  
qiaolongfei 已提交
919
    **Prior Box Operator**
920 921 922 923 924 925 926 927 928 929 930

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
931
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
932 933
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
934 935
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
936 937 938 939
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
940
       step(list|turple): Prior boxes step across width and height, If
941
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
942 943
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
944 945
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
946
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
947
            in order of [min, max, aspect_ratios], which is consistent with
948 949 950
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
951 952

    Returns:
Q
update  
qiaolongfei 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
966 967 968 969


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
970 971 972 973 974 975 976

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
977 978 979 980
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

996 997 998 999 1000 1001 1002 1003
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1004 1005
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1006 1007
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1008 1009
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1010 1011
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1012 1013
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1026
def multi_box_head(inputs,
C
chengduoZH 已提交
1027 1028
                   image,
                   base_size,
C
chengduoZH 已提交
1029
                   num_classes,
C
chengduoZH 已提交
1030
                   aspect_ratios,
1031 1032
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1033 1034
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1035 1036 1037 1038
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1039 1040
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1041
                   clip=False,
C
chengduoZH 已提交
1042
                   kernel_size=1,
C
chengduoZH 已提交
1043
                   pad=0,
C
chengduoZH 已提交
1044
                   stride=1,
1045 1046
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1047
    """
C
chengduoZH 已提交
1048 1049
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1050
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1051
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1052 1053

    Args:
1054
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1055
            of all Variables is NCHW.
C
chengduoZH 已提交
1056 1057
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1058 1059
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1082
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1083 1084 1085 1086 1087 1088
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1089
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1090
            in order of [min, max, aspect_ratios], which is consistent with
1091 1092 1093
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1094 1095

    Returns:
Q
update  
qiaolongfei 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1111

C
chengduoZH 已提交
1112 1113 1114

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1115 1116

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1127 1128
    """

C
chengduoZH 已提交
1129
    def _reshape_with_axis_(input, axis=1):
1130
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1131
        return out
1132

1133 1134
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1135

C
chengduoZH 已提交
1136 1137 1138 1139
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1140 1141
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1142

C
chengduoZH 已提交
1143 1144 1145 1146 1147
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1148
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1149 1150 1151
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1152
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1153 1154 1155 1156 1157
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1181 1182
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1183 1184
    box_results = []
    var_results = []
C
chengduoZH 已提交
1185 1186
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1187 1188
        max_size = max_sizes[i]

1189
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1190
            min_size = [min_size]
C
chengduoZH 已提交
1191 1192
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1193 1194 1195 1196

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1197
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1198
                aspect_ratio = [aspect_ratio]
1199
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1200

1201
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1202 1203
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1204 1205 1206 1207 1208

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1209

1210
        # get loc
Y
Yuan Gao 已提交
1211
        num_loc_output = num_boxes * 4
1212
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1213
            input=input,
1214 1215 1216 1217 1218
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1219
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1220
        compile_shape = [
1221
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1222
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1223
        ]
1224 1225 1226
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1227
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1228

1229
        # get conf
C
chengduoZH 已提交
1230
        num_conf_output = num_boxes * num_classes
1231
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1232
            input=input,
1233 1234 1235 1236
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1237
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1238 1239
        new_shape = [0, -1, num_classes]
        compile_shape = [
1240 1241 1242
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1243
        ]
1244 1245 1246 1247
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1248
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1249

C
chengduoZH 已提交
1250 1251 1252
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1253 1254
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1264 1265
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1266

1267 1268
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1269
    return mbox_locs_concat, mbox_confs_concat, box, var
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1351 1352
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1353 1354 1355 1356 1357 1358 1359 1360 1361
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1362 1363


W
whs 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
        transformed_height (integer): The width of transformed output.
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

            out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1398
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": out},
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1412 1413
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1414
                             is_crowd,
1415
                             gt_boxes,
1416
                             im_info,
1417 1418 1419 1420 1421 1422
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1423 1424
                             class_nums=None,
                             use_random=True):
1425 1426
    """
    ** Generate proposal labels Faster-RCNN **
B
buxingyuan 已提交
1427
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
1428
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
1429 1430 1431

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
1432
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
1433 1434
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
1435
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
1436
    then we apply random sampling to make sure
B
buxingyuan 已提交
1437
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
1457 1458 1459 1460
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1470 1471 1472 1473 1474 1475

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1476
            'IsCrowd': is_crowd,
1477
            'GtBoxes': gt_boxes,
1478
            'ImInfo': im_info
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1494 1495
            'class_nums': class_nums,
            'use_random': use_random
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
B
buxingyuan 已提交
1519
    ** Generate proposal Faster-RCNN **
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	
	This operation proposes RoIs according to each box with their probability to be a foreground object and 
	the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
	could be used to train detection net.

	For generating proposals, this operation performs following steps:

	1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
 	2. Calculate box locations as proposals candidates. 
	3. Clip boxes to image
	4. Remove predicted boxes with small area. 
	5. Apply NMS to get final proposals as output.
	
      
	Args:
		scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
			N is batch size, A is number of anchors, H and W are height and width of the feature map.
		bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location. 
		im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
			between origin image size and the size of feature map.
		anchors(Variable):   A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
              		num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
		variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format.
		pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default.
		post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default.
		nms_thresh(float): Threshold in NMS, 0.5 by default.
		min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
		eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
1551 1552 1553 1554
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs