common.py 91.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16
import paddle
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18 19 20 21
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
22
from ...fluid import dygraph_utils
23
# TODO: define the common functions to build a neural network
24 25
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
26 27 28
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
29
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
H
hong 已提交
30
from ...fluid.framework import _varbase_creator, _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
X
xiaoting 已提交
31

Z
zhiboniu 已提交
32 33
from ...fluid import dygraph_utils

W
wanghuancoder 已提交
34
from paddle import _C_ops
Z
zhiboniu 已提交
35 36 37
from paddle.framework import in_dynamic_mode
from paddle.tensor.creation import full
from paddle.framework import core
38
from paddle.fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
39
from paddle.static import default_main_program
40

41 42
__all__ = []

X
xiaoting 已提交
43

44 45 46
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

47
    Return a col buffer of sliding local blocks of input x, also known
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
94
        Tensor, The tensor corresponding to the sliding local blocks.
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    if in_dygraph_mode():
        return _C_ops.final_state_unfold(x, kernel_sizes, strides, paddings,
                                         dilations)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
157 158 159 160 161 162 163 164 165
    helper.append_op(type="unfold",
                     inputs={"X": x},
                     outputs={"Y": out},
                     attrs={
                         "kernel_sizes": kernel_sizes,
                         "strides": strides,
                         "paddings": paddings,
                         "dilations": dilations
                     })
166 167 168
    return out


X
xiaoting 已提交
169
def interpolate(x,
170 171 172 173
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
174
                align_mode=0,
175 176
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
177
    """
S
swtkiwi 已提交
178

X
xiaoting 已提交
179
    This op resizes a batch of images.
180 181
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
182
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
183 184
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
185
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
186

X
xiaoting 已提交
187
    Supporting resample methods:
188 189 190 191 192
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
193
        'area': Area interpolation
194 195 196 197

    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
X
xiaoting 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
212
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
213 214 215 216 217 218 219
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

220 221 222 223 224 225
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to 
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or 
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
226 227 228 229
    Example:

    .. code-block:: text

230
        For scale_factor:
X
xiaoting 已提交
231 232 233 234 235
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

236 237 238 239 240 241 242 243 244 245 246
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        
X
xiaoting 已提交
247
        Nearest neighbor interpolation:
X
xiaoting 已提交
248

X
xiaoting 已提交
249 250 251 252 253
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
254

X
xiaoting 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

296 297 298
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
    
X
xiaoting 已提交
299 300
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
301
    
X
xiaoting 已提交
302 303
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
304
    
X
xiaoting 已提交
305 306
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
307
    
X
xiaoting 已提交
308 309
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
310
    
X
xiaoting 已提交
311
    Parameters:
X
xiaoting 已提交
312
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
313
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
314
        size (list|tuple|Tensor|None): Output shape of image resize
315 316
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
317
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
318
             If a Tensor, its dimensions size should be a 1.
319 320 321
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
322
             Default: None.
323
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
324
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
325 326
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
327
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
328 329 330 331
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
332
        data_format (str, optional): Specify the data format of the input, and the data format of the output
333
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
334 335 336
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
337 338 339
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
340
    Returns:
341
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
342 343 344
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
X
xiaoting 已提交
345
        TypeError: size should be a list or tuple or Tensor.
346
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
347
                    'trilinear', 'bicubic', 'area' or 'nearest' currently.
348
        ValueError: 'linear' only support 3-D tensor.
349 350
        ValueError: 'bilinear' and 'bicubic' only support 4-D tensor.
        ValueError: 'nearest' only support 4-D or 5-D tensor.
351 352 353 354 355 356
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
X
xiaoting 已提交
357 358
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
359 360
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.

X
xiaoting 已提交
361 362 363
    Examples:
        .. code-block:: python

364 365
	        import paddle
	        import numpy as np
X
xiaoting 已提交
366 367 368 369 370 371 372
            import paddle.nn.functional as F
            
            # given out size
            input_data = np.random.rand(2,3,6,10).astype("float32")
            x = paddle.to_tensor(input_data)
            output_1 = F.interpolate(x=x, size=[12,12])
    	    print(output_1.shape)
373
	        # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
374 375 376 377 378 379 380 381 382 383
            
            # given scale
            output_2 = F.interpolate(x=x, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
            
            # bilinear interp
            output_3 = F.interpolate(x=x, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
384
    """
385 386 387 388 389 390 391 392 393 394
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
395
        'AREA',
396
    ]
X
xiaoting 已提交
397 398
    if resample not in resample_methods:
        raise ValueError(
399
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
400
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
401

X
xiaoting 已提交
402
    if resample in ['LINEAR'] and len(x.shape) != 3:
403
        raise ValueError("'linear' only support 3-D tensor.")
404

405 406 407 408 409
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
410
    if resample == 'TRILINEAR' and len(x.shape) != 5:
411 412 413 414
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
415 416 417

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
418

X
xiaoting 已提交
419 420
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
421 422 423 424
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
425

X
xiaoting 已提交
426
    if resample == 'AREA':
427 428
        if isinstance(size, list) or isinstance(size, tuple) or isinstance(
                size, Variable):
X
xiaoting 已提交
429 430 431 432 433 434 435 436
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
437

X
xiaoting 已提交
438
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
439
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
440
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
441 442
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
443
            " received but only `NCW` or `NWC` supported for 3-D input.")
X
xiaoting 已提交
444
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
445 446 447
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
X
xiaoting 已提交
448
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
449 450 451 452 453 454 455
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

456
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
457
        data_layout = 'NCHW'
458
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
459 460
        data_layout = 'NHWC'

X
xiaoting 已提交
461 462 463 464
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
465 466 467 468 469 470 471 472 473 474
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

475 476
    out_shape = size
    scale = scale_factor
477 478
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
479
    if out_shape is not None:
Z
zhiboniu 已提交
480
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
481 482 483
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
484
            if in_dynamic_mode():
485 486
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
487 488
                else:
                    out_shape = list(out_shape)
489 490 491
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
492
            if not (_is_list_or_turple_(out_shape)):
493
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
516 517 518 519 520
                        fill_constant([1],
                                      'int32',
                                      dim,
                                      force_cpu=True,
                                      out=temp_out)
X
xiaoting 已提交
521 522 523 524
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
525
            if len(x.shape) == 3:
526 527
                if len(out_shape) != 1:
                    raise ValueError(
528
                        "size length should be 2 for input 3-D tensor")
529 530 531 532 533
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
534
            if len(x.shape) == 4:
X
xiaoting 已提交
535
                if len(out_shape) != 2:
536
                    raise ValueError("size length should be 2 for "
X
xiaoting 已提交
537 538 539 540 541 542 543 544
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
545
            if len(x.shape) == 5:
X
xiaoting 已提交
546
                if len(out_shape) != 3:
547
                    raise ValueError("size length should be 3 for "
X
xiaoting 已提交
548 549 550 551 552 553 554 555 556 557 558 559
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
560
        if in_dynamic_mode() and isinstance(scale, Variable):
561
            scale = list(scale.numpy())
X
xiaoting 已提交
562 563 564 565 566 567
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
568 569 570 571
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
572
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
573 574 575 576 577 578 579 580
            if len(scale) != len(x.shape) - 2:
                raise ValueError("scale_shape length should be {} for "
                                 "input {}-D tensor.".format(
                                     len(x.shape) - 2, len(x.shape)))
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
581 582
        else:
            raise TypeError(
583 584
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
585

Z
zhiboniu 已提交
586
    if in_dynamic_mode():
X
xiaoting 已提交
587 588 589 590 591 592 593
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
W
wanghuancoder 已提交
594
            out = _C_ops.linear_interp_v2(x, *dy_attr)
595
        elif resample_type == "bilinear":
W
wanghuancoder 已提交
596
            out = _C_ops.bilinear_interp_v2(x, *dy_attr)
597
        elif resample_type == "trilinear":
W
wanghuancoder 已提交
598
            out = _C_ops.trilinear_interp_v2(x, *dy_attr)
599
        elif resample_type == "nearest":
W
wanghuancoder 已提交
600
            out = _C_ops.nearest_interp_v2(x, *dy_attr)
601
        elif resample_type == "bicubic":
W
wanghuancoder 已提交
602
            out = _C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
603
        return out
X
xiaoting 已提交
604
    out = helper.create_variable_for_type_inference(dtype)
605 606 607 608
    helper.append_op(type='{}_interp_v2'.format(resample_type),
                     inputs=inputs,
                     outputs={"Out": out},
                     attrs=attrs)
X
xiaoting 已提交
609
    return out
L
littletomatodonkey 已提交
610 611


X
xiaoting 已提交
612 613 614 615 616 617 618 619 620 621
def upsample(x,
             size=None,
             scale_factor=None,
             mode='nearest',
             align_corners=False,
             align_mode=0,
             data_format='NCHW',
             name=None):
    """
    This op resizes a batch of images.
622

X
xiaoting 已提交
623 624 625
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
626 627
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
652

X
xiaoting 已提交
653 654 655
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
656

X
xiaoting 已提交
657 658 659
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
660 661 662 663 664 665 666

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
    Example:
    .. code-block:: text
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
        
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
    
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
    
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
757
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
758
             If a Tensor , its dimensions size should be a 1.
759 760 761 762
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if 
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
             Default: None.
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
        TypeError: size should be a list or tuple or Tensor.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
        Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.nn.functional as F

X
xiaoting 已提交
806
            input_data = np.random.rand(2,3,6,10).astype("float32")
X
xiaoting 已提交
807
            input = paddle.to_tensor(input_data)
X
xiaoting 已提交
808
            output = F.upsample(x=input, size=[12,12])
X
xiaoting 已提交
809 810 811 812 813 814 815 816
            print(output.shape)
            # [2L, 3L, 12L, 12L]

    """
    return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
                       data_format)


817 818 819 820
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
821
    See :ref:`api_nn_Bilinear` for details and output shape.
822 823 824 825 826 827 828 829 830 831

    Parameters:
       x1 (Tensor): the first input tensor, it's data type should be float32, float64.
       x2 (Tensor): the second input tensor, it's data type should be float32, float64.
       weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
       bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
832
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

    Examples:
       .. code-block:: python

        import paddle
        import numpy
        import paddle.nn.functional as F

        x1 = numpy.random.random((5, 5)).astype('float32')
        x2 = numpy.random.random((5, 4)).astype('float32')
        w = numpy.random.random((1000, 5, 4)).astype('float32')
        b = numpy.random.random((1, 1000)).astype('float32')

        result = F.bilinear(paddle.to_tensor(x1), paddle.to_tensor(x2), paddle.to_tensor(w), paddle.to_tensor(b))           # result shape [5, 1000]

    """

850 851 852
    if in_dygraph_mode():
        return _C_ops.final_state_bilinear_tensor_product(x1, x2, weight, bias)
    elif _non_static_mode():
W
wanghuancoder 已提交
853
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
854 855 856 857 858 859 860 861 862 863 864

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

865 866 867
    helper.append_op(type="bilinear_tensor_product",
                     inputs=inputs,
                     outputs={"Out": out})
868 869 870 871

    return out


872 873 874 875 876 877 878 879 880 881 882 883 884 885
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
886 887
        p (float|int): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
888
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
889
        mode(str): ['upscale_in_train'(default) | 'downscale_in_infer'].
890 891 892 893 894 895 896 897 898 899

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
900
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
901 902 903 904

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

905

906 907
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
908

909
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
910 911 912

        ..  code-block:: text

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

938 939


940
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
941 942 943

        ..  code-block:: text

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
972
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
973 974 975 976 977 978 979 980 981 982
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
983 984 985

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
986 987

        .. code-block:: python
988

989 990 991 992 993 994 995 996 997 998
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False) 
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
999 1000 1001 1002 1003 1004
            print(x)
            print(y_train)
            print(y_test)
            print(y_0)
            print(y_1)
            print(y_01)
1005 1006

    """
1007 1008 1009 1010 1011 1012 1013 1014
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
        if p == 0: return x
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1015 1016
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1017 1018
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1019
    if axis and not isinstance(axis, (int, list, tuple)):
1020 1021 1022 1023 1024 1025
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

H
hong 已提交
1026
        if _non_static_mode():
1027 1028
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1029 1030 1031 1032 1033 1034

            if in_dygraph_mode():
                out, mask = _C_ops.final_state_dropout( x, None, p, not training, mode, \
                    seed if seed is not None else 0, seed is not None)

                return out
1035 1036 1037 1038 1039
            out, mask = _C_ops.dropout(x, 'dropout_prob', p, 'is_test',
                                       not training, 'fix_seed', seed
                                       is not None, 'seed',
                                       seed if seed is not None else 0,
                                       'dropout_implementation', mode)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1050 1051 1052
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
1053 1054 1055 1056 1057 1058

            if isinstance(dropout_prob,
                          Variable) and not dropout_prob.shape != [1]:
                raise TypeError(
                    "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}"
                    .format(p.shape))
1059 1060 1061 1062 1063 1064 1065 1066 1067
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1068 1069
        attrs = get_attrs(helper.main_program, p, not training, seed)

1070 1071 1072 1073 1074 1075 1076
        helper.append_op(type='dropout',
                         inputs={'X': [x]},
                         outputs={
                             'Out': [out],
                             'Mask': [mask]
                         },
                         attrs=attrs)
1077 1078
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1079
        if not in_dynamic_mode():
1080 1081 1082 1083 1084
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
            if p == 1.:
1085
                return paddle.scale(x, scale=0.)
1086

1087
            scale_input = paddle.scale(
1088 1089 1090 1091
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
Z
zhiboniu 已提交
1092
            if not in_dynamic_mode():
1093
                input_shape_tensor = paddle.shape(x)
1094
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1095 1096
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} " \
1097 1098 1099
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1100 1101
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}"
                    .format(len(input_shape), len(drop_axes)))
1102
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1103
            if not in_dynamic_mode():
1104 1105 1106 1107 1108
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1109 1110

            #get mask
1111 1112 1113 1114
            random_tensor = paddle.uniform(mask_shape,
                                           dtype='float32',
                                           min=0.,
                                           max=1.0)
Z
zhiboniu 已提交
1115
            p = full(shape=[1], fill_value=p, dtype='float32')
1116
            keep_mask = paddle.greater_equal(random_tensor, p)
1117

1118 1119
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1120 1121 1122
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1123
            ret = paddle.scale(
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1141
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
1142 1143 1144 1145 1146
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1147

1148 1149
    Examples:
        .. code-block:: python
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
                    print(x.numpy()[i,j,:,:])
                    print(y_train.numpy()[i,j,:,:]) # may all 0
                    print(y_test.numpy()[i,j,:,:])
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1174 1175 1176 1177 1178 1179
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCHW' else [0, 3],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1195
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1196 1197 1198 1199 1200
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1201

1202 1203
    Examples:
        .. code-block:: python
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x.numpy()[0,0,:,:,:])
            print(y_train.numpy()[0,0,:,:,:]) # may all 0
            print(y_test.numpy()[0,0,:,:,:])
    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1227 1228 1229 1230 1231 1232
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1233 1234


1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1253

1254 1255 1256 1257 1258 1259 1260
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
1261 1262
            print(x)
            print(y_train)
1263
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
1264
            print(y_test)
1265 1266 1267 1268 1269 1270
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1271
    if not in_dynamic_mode():
1272 1273 1274 1275
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'alpha_dropout')

    if training:
1276
        if p == 1:
1277
            return paddle.scale(x, scale=0.)
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
        #get transformation params
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
        a = ((1 - p) * (1 + p * alpha_p**2))**-0.5
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

        #get mask
1289 1290 1291 1292
        random_tensor = paddle.uniform(input_shape,
                                       dtype='float32',
                                       min=0.,
                                       max=1.0)
Z
zhiboniu 已提交
1293
        p = full(shape=[1], fill_value=p, dtype='float32')
1294 1295 1296
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1297
            full(shape=input_shape, fill_value=1., dtype=dtype), keep_mask)
1298 1299

        #apply mask
Z
zhiboniu 已提交
1300
        b = full(shape=[1], fill_value=b, dtype=dtype)
1301
        y = paddle.add(paddle.multiply(x, keep_mask),
1302
                       paddle.scale(drop_mask, scale=alpha_p))
1303
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1304 1305 1306 1307 1308
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1309 1310 1311
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1312 1313 1314
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1315 1316 1317 1318 1319
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1320 1321 1322 1323
        pad (Tensor | List[int] | Tuple[int]): The padding size with data type int.
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will 
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
L
littletomatodonkey 已提交
1324 1325 1326
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right, 
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form 
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1327
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
L
littletomatodonkey 已提交
1328 1329 1330 1331 1332
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'
1333 1334
        value (float32, optional): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str, optional): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
L
littletomatodonkey 已提交
1335 1336 1337 1338 1339
           the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
                    
1340 1341
    Returns: 
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1342 1343 1344 1345 1346 1347 1348 1349

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1350 1351 1352 1353 1354 1355 1356 1357 1358
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1359 1360 1361 1362 1363 1364 1365 1366
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1367
            Case 2:
L
littletomatodonkey 已提交
1368 1369 1370 1371 1372 1373 1374
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1375
            Case 3:
L
littletomatodonkey 已提交
1376 1377 1378 1379 1380 1381 1382
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1383
            Case 4:
L
littletomatodonkey 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

    Code Examples:
        .. code-block:: python
L
littletomatodonkey 已提交
1393

L
littletomatodonkey 已提交
1394 1395 1396 1397 1398 1399
            import numpy as np
            import paddle
            import paddle.nn.functional as F
            
            # example 1
            x_shape = (1, 1, 3)
L
littletomatodonkey 已提交
1400
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
1401
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1402
            print(y)
L
littletomatodonkey 已提交
1403
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1404
            
L
littletomatodonkey 已提交
1405
            # example 2
1406 1407 1408 1409 1410 1411 1412
            x_shape = (1, 1, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
            
            # example 3
L
littletomatodonkey 已提交
1413
            x_shape = (1, 1, 2, 3)
L
littletomatodonkey 已提交
1414 1415 1416
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

1432 1433
    if mode == "constant" and isinstance(
            pad, (list, tuple)) and len(pad) == x_dim * 2:
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
        paddings = pad
        pad_value = value
        check_variable_and_dtype(x, 'x', [
            'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
            'complex128'
        ], "pad")

        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1444 1445 1446 1447 1448 1449 1450
        helper.append_op(type='pad',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'paddings': paddings,
                             'pad_value': float(pad_value)
                         })
1451
        return out
L
littletomatodonkey 已提交
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    assert x_dim in [
        3, 4, 5
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
    assert data_format in supported_format_map[x_dim], \
    "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format)

L
littletomatodonkey 已提交
1466 1467 1468 1469 1470 1471 1472 1473
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
1474
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1475 1476 1477
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
1478
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1479 1480 1481 1482 1483
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
1484
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1485 1486 1487
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
1488
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1489
    else:
1490
        pad = list(pad)
L
littletomatodonkey 已提交
1491 1492 1493 1494 1495
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1496
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1497 1498 1499
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1500
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1501 1502 1503 1504 1505
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1506
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1507 1508 1509
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1510
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1511

J
Jiabin Yang 已提交
1512
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1513
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1514 1515 1516
            pad = pad.numpy().tolist()
        out = _C_ops.final_state_pad3d(x, pad, mode, value, data_format)
    else:
1517
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1518 1519
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
1520 1521 1522
            out = _C_ops.pad3d(x, "paddings", pad, "mode", mode, "value", value,
                               "data_format", data_format, "name", name)
        else:
J
Jiabin Yang 已提交
1523 1524 1525 1526 1527 1528 1529
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1530

J
Jiabin Yang 已提交
1531
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1532

J
Jiabin Yang 已提交
1533 1534
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
1535 1536 1537 1538
            helper.append_op(type='pad3d',
                             inputs=inputs,
                             outputs={"Out": out},
                             attrs=attrs)
L
littletomatodonkey 已提交
1539 1540

    if len(unsqueezed_dim) != 0:
1541
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1542 1543 1544 1545

    return out


1546 1547 1548 1549 1550 1551 1552 1553 1554
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1555
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1556 1557 1558 1559
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1560 1561
    Returns:
        Tensor, padded with 0 according to pad and data type is same as input.
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

    return pad(x,
               pad=padding,
               mode='constant',
               value=0,
               data_format=data_format,
               name=name)


Y
Yang Zhang 已提交
1587
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1588
    """
Y
Yang Zhang 已提交
1589
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1590 1591 1592 1593

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1594 1595
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
L
littletomatodonkey 已提交
1596
                    
1597 1598
    Returns: 
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1599 1600 1601

    Examples:
        .. code-block:: text
1602

L
littletomatodonkey 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1612
                axis = 1
L
littletomatodonkey 已提交
1613 1614 1615 1616 1617
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1618

L
littletomatodonkey 已提交
1619 1620 1621
            import paddle
            import paddle.nn as nn

1622 1623 1624 1625
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1626
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1627
            print(result)
1628
            # [0.97689527,  0.99996042, -0.55138415]
L
littletomatodonkey 已提交
1629 1630
            
    """
1631 1632 1633
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1634
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1635 1636
    cos_sim = w12 / n12
    return cos_sim
1637 1638 1639


def linear(x, weight, bias=None, name=None):
1640
    r"""
1641

1642 1643
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1644 1645 1646

    .. math::

1647
        Out = XW + b
1648

1649
    where :math:`W` is the weight and :math:`b` is the bias.
1650

1651 1652 1653 1654 1655 1656 1657
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` , 
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1658

1659 1660 1661 1662 1663 1664 1665
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1666 1667

    Returns:
1668 1669
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1670 1671 1672 1673 1674 1675

    Examples:
        .. code-block:: python
          
          import paddle
          
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1689
    """
J
Jiabin Yang 已提交
1690
    if in_dygraph_mode():
1691
        #TODO(jiabin): using addmm for fast forward route
1692
        return _C_ops.final_state_linear(x, weight, bias)
1693
    else:
J
Jiabin Yang 已提交
1694 1695 1696
        if _in_legacy_dygraph():
            pre_bias = _C_ops.matmul_v2(x, weight, 'trans_x', False, 'trans_y',
                                        False)
1697

J
Jiabin Yang 已提交
1698 1699
            if bias is None:
                return pre_bias
1700

J
Jiabin Yang 已提交
1701
            return _C_ops.elementwise_add(pre_bias, bias)
1702
        else:
J
Jiabin Yang 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                        'linear')

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
1714 1715 1716 1717
            helper.append_op(type='matmul_v2',
                             inputs=inputs,
                             outputs={'Out': tmp},
                             attrs=attrs)
J
Jiabin Yang 已提交
1718 1719
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
1720 1721 1722 1723 1724 1725 1726
                helper.append_op(type='elementwise_add',
                                 inputs={
                                     'X': [tmp],
                                     'Y': [bias]
                                 },
                                 outputs={'Out': [res]},
                                 attrs={'axis': len(x.shape) - 1})
J
Jiabin Yang 已提交
1727 1728 1729
            else:
                res = tmp
            return res
1730 1731 1732


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1733
    r"""
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
    Label smoothing is a mechanism to regularize the classifier layer and is called
    label-smoothing regularization (LSR).

    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1785
            print(output)
1786 1787 1788 1789
            
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
1790 1791 1792
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")

1793 1794 1795 1796
    if in_dygraph_mode():
        return _C_ops.final_state_label_smooth(label, prior_dist,
                                               float(epsilon))

1797
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1798
        return _C_ops.label_smooth(label, prior_dist, 'epsilon', float(epsilon))
1799 1800 1801 1802 1803 1804 1805

    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'label_smooth')

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1806 1807 1808 1809 1810 1811 1812
    helper.append_op(type="label_smooth",
                     inputs={
                         "X": label,
                         "PriorDist": prior_dist
                     } if prior_dist else {"X": label},
                     outputs={"Out": smooth_label},
                     attrs={"epsilon": float(epsilon)})
1813
    return smooth_label
1814 1815


G
Guoxia Wang 已提交
1816
def class_center_sample(label, num_classes, num_samples, group=None):
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
    The process of sampling subset class centers is straightforward: 

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly 
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
    
    .. hint::
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive 
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1833

1834 1835
        The API supports CPU, single GPU and multi GPU.

1836 1837 1838 1839
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1840
    Args:
G
Guoxia Wang 已提交
1841 1842
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1843
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1844
        num_samples (int): A positive integer to specify the number of class center to sample.
1845 1846 1847
        group (Group, optional): The group instance return by paddle.distributed.new_group 
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1848 1849 1850 1851 1852 1853 1854 1855

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1856
        :name: code-example1
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
1879
        :name: code-example2
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
        
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
1920 1921 1922 1923 1924 1925 1926
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1927 1928
        return

1929
    ring_id = 0
1930 1931
    rank = 0
    nranks = 1
1932 1933 1934 1935 1936 1937 1938
    if group != False:
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1939 1940 1941 1942 1943 1944

    if num_samples > num_classes:
        raise ValueError(
            'Expected num_samples less than or equal to {}, got num_samples {}'.
            format(num_classes, num_samples))

G
Guoxia Wang 已提交
1945 1946 1947
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
1948
    if label_size != -1 and label_size < 1:
G
Guoxia Wang 已提交
1949
        raise ValueError('Expected label_size > 0 \
1950
             (got label_size: {})'.format(label_size))
G
Guoxia Wang 已提交
1951 1952 1953 1954

    label_dims = len(list(label.shape))
    if label_dims != 1:
        raise ValueError('Expected label_dims == 1 \
1955
             (got label_dims: {})'.format(label_dims))
G
Guoxia Wang 已提交
1956 1957

    seed = None
1958 1959 1960
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

Z
zhiboniu 已提交
1961
    if in_dynamic_mode():
1962
        remapped_label, sampled_class_center = _C_ops.class_center_sample(
1963
            label, 'num_classes', num_classes, 'num_samples', num_samples,
1964 1965
            'ring_id', ring_id, 'nranks', nranks, 'rank', rank, 'fix_seed', seed
            is not None, 'seed', seed if seed is not None else 0)
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        return remapped_label, sampled_class_center

    check_variable_and_dtype(label, 'label', ['int64', 'int32'],
                             'class_center_sample')
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
        dtype=label.dtype)
    sampled_class_center = helper.create_variable_for_type_inference(
        dtype=label.dtype)
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
    helper.append_op(type=op_type,
                     inputs={'Label': label},
                     outputs={
                         'RemappedLabel': remapped_label,
                         'SampledLocalClassCenter': sampled_class_center
                     },
                     attrs={
                         'num_classes': num_classes,
                         'num_samples': num_samples,
                         'ring_id': ring_id,
                         'nranks': nranks,
                         'rank': rank,
                         'fix_seed': seed is not None,
                         'seed': seed if seed is not None else 0
                     })
1991
    return remapped_label, sampled_class_center
X
xiaoting 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018


def fold(x,
         output_sizes,
         kernel_sizes,
         strides=1,
         paddings=0,
         dilations=1,
         name=None):
    r"""
    
    This Op is used to combines an array of sliding local blocks into a large containing
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each 
    combined value in the resulting large tensor by summing all values from all containing blocks. 


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
        H_out &= output_size[0]
        W_out &= output_size[1]
        C_out &= C_in / kernel\_sizes[0] / kernel\_sizes[1]

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2019
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2020
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2021
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2022
                                  or an integer k treated as [k, k].
X
xiaoting 已提交
2023
        strides(int|list|tuple):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2024 2025
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
X
xiaoting 已提交
2026
        paddings(int|list|tuple):       The paddings of each dimension, should be
X
xiaoting 已提交
2027 2028 2029 2030 2031 2032
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
X
xiaoting 已提交
2033
        dilations(int|list|tuple):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2052 2053 2054
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

    assert len(x.shape) == 3, \
            "input should be the format of [N, C, L]"

X
xiaoting 已提交
2065 2066 2067
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

X
xiaoting 已提交
2068 2069 2070
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
X
xiaoting 已提交
2071 2072
        assert _is_list_or_turple_(output_sizes) and (len(output_sizes) == 2), \
            "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2073 2074 2075 2076

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
X
xiaoting 已提交
2077 2078
        assert _is_list_or_turple_(kernel_sizes) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2079 2080 2081 2082

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
X
xiaoting 已提交
2083 2084
        assert _is_list_or_turple_(strides) and (len(strides) == 2), \
            "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2085 2086 2087 2088

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
X
xiaoting 已提交
2089 2090
        assert _is_list_or_turple_(dilations) and (len(dilations) == 2), \
            "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

X
xiaoting 已提交
2108 2109 2110 2111
    if in_dygraph_mode():
        out = _C_ops.final_state_fold(x, output_sizes, kernel_sizes, strides,
                                      paddings, dilations)
    elif in_dynamic_mode():
X
xiaoting 已提交
2112 2113 2114 2115 2116
        out = _C_ops.fold(x, "output_sizes", output_sizes, "kernel_sizes",
                          kernel_sizes, "strides", strides, "paddings",
                          paddings, "dilations", dilations)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
        helper.append_op(type="fold",
                         inputs={"X": x},
                         outputs={"Y": out},
                         attrs={
                             "output_sizes": output_sizes,
                             "kernel_sizes": kernel_sizes,
                             "strides": strides,
                             "paddings": paddings,
                             "dilations": dilations
                         })
X
xiaoting 已提交
2127
    return out