common.py 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16 17
import paddle
from ...fluid.framework import in_dygraph_mode, default_main_program
X
xiaoting 已提交
18
from paddle.fluid.layer_helper import LayerHelper
L
littletomatodonkey 已提交
19
from paddle.fluid.layers.tensor import Variable, fill_constant, zeros, concat
X
xiaoting 已提交
20

21
# TODO: define the common functions to build a neural network  
22 23 24 25 26
from ...fluid.layers import label_smooth  #DEFINE_ALIAS
from ...fluid import one_hot  #DEFINE_ALIAS
from ...fluid.layers import pad2d  #DEFINE_ALIAS
from ...fluid.layers import unfold  #DEFINE_ALIAS
from ...fluid.layers import assign  #DEFINE_ALIAS
L
littletomatodonkey 已提交
27 28 29
from ...fluid.layers import squeeze  #DEFINE_ALIAS
from ...fluid.layers import unsqueeze  #DEFINE_ALIAS
from ...fluid.layers import elementwise_mul  #DEFINE_ALIAS
Y
Yang Zhang 已提交
30 31 32
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
X
xiaoting 已提交
33

34 35
#from ...fluid.layers import fc  #DEFINE_ALIAS
from ...fluid.layers import pad_constant_like  #DEFINE_ALIAS
36 37
from ...fluid import core, layers
from ...fluid.data_feeder import check_variable_and_dtype
38

39 40
__all__ = [
    'dropout',
41 42
    'dropout2d',
    'dropout3d',
43 44 45 46 47
    #       'embedding',
    #       'fc',
    'label_smooth',
    'one_hot',
    'pad',
48
    'pad_constant_like',
49 50 51 52
    'pad2d',
    'unfold',
    #       'bilinear_tensor_product',
    'assign',
L
littletomatodonkey 已提交
53 54
    'interpolate',
    'cosine_similarity',
55
]
X
xiaoting 已提交
56 57 58


def interpolate(input,
59 60 61 62
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
63
                align_mode=1,
64 65
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
66
    """
H
hong 已提交
67 68
	:alias_main: paddle.nn.functional.interpolate
	:alias: paddle.nn.functional.interpolate,paddle.nn.functional.common.interpolate
S
swtkiwi 已提交
69

X
xiaoting 已提交
70
    This op resizes a batch of images.
71 72
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
73 74 75 76 77
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
    future and only use :attr:`out_shape` instead.
    Supporting resample methods:
78 79 80 81 82 83 84 85 86
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
X
xiaoting 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    Align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

    Example:

    .. code-block:: text

113
        For scale_factor:
X
xiaoting 已提交
114 115 116 117 118
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

119 120 121 122 123 124 125 126 127 128 129
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        
X
xiaoting 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
143

X
xiaoting 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

185 186 187
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
    
X
xiaoting 已提交
188 189
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
190
    
X
xiaoting 已提交
191 192
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
193
    
X
xiaoting 已提交
194 195
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
196
    
X
xiaoting 已提交
197 198
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
199
    
X
xiaoting 已提交
200
    Parameters:
201
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
202
                          its data format is specified by :attr:`data_format`.
203 204 205 206
        size (list|tuple|Variable|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
X
xiaoting 已提交
207
             If a Tensor Variable, its dimensions size should be a 1.
208 209 210
        scale_factor (float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.
X
xiaoting 已提交
211
             Default: None.
212 213
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
214 215 216
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
217 218 219 220
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
221
        data_format (str, optional): Specify the data format of the input, and the data format of the output
222
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
223 224 225
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
226 227 228
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
229
    Returns:
230
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
231 232 233
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
234 235 236 237 238 239 240 241 242 243 244
        TypeError: size should be a list or tuple or Variable.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
X
xiaoting 已提交
245 246
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
247 248
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.

X
xiaoting 已提交
249 250 251 252 253 254 255 256
    Examples:
        .. code-block:: python

	    #declarative mode
	    import paddle
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])
	    #1
257
	    output = paddle.nn.functional.interpolate(input=input, size=[12,12])
X
xiaoting 已提交
258 259 260 261
	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
262
	    #output = paddle.nn.functional.interpolate(input=input, size=[12,dim1])
X
xiaoting 已提交
263 264 265 266
	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
267
	    #output = paddle.nn.functional.interpolate(input=input, size=shape_tensor)
X
xiaoting 已提交
268 269 270 271
	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
272
	    #output = paddle.nn.functional.interpolate(input=input, scale_factor=scale_tensor)
X
xiaoting 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    input_data = np.random.rand(2,3,6,10).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)

	    print(output_data[0].shape)
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
	    #imperative mode
	    import paddle.fluid.dygraph as dg
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
296
    		output = paddle.nn.functional.interpolate(input=input, size=[12,12])
X
xiaoting 已提交
297 298 299
    		print(output.shape)
		# [2L, 3L, 12L, 12L]
    """
300 301 302 303 304 305 306 307 308 309 310
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
    ]
X
xiaoting 已提交
311 312
    if resample not in resample_methods:
        raise ValueError(
313 314
            "The 'resample' of image_resize can only be 'linaer', 'bilinear', 'trilinear', "
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
315

316
    if resample in ['LINEAR'] and len(input.shape) != 3:
317
        raise ValueError("'linear' only support 3-D tensor.")
318

X
xiaoting 已提交
319 320
    if resample in ['BILINEAR', 'NEAREST', 'BICUBIC'] and len(input.shape) != 4:
        raise ValueError(
321
            "'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.")
X
xiaoting 已提交
322
    if resample == 'TRILINEAR' and len(input.shape) != 5:
323 324 325 326
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
327 328 329

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
330

X
xiaoting 已提交
331 332 333 334 335 336
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
    dtype = helper.input_dtype()

337
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
338 339
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
340
            " received but only `NCW` or `NWC` supported for 3-D input.")
341
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
342 343 344 345 346 347 348 349 350 351 352
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

353
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
354
        data_layout = 'NCHW'
355
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368
        data_layout = 'NHWC'

    inputs = {"X": input}
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

369 370
    out_shape = size
    scale = scale_factor
X
xiaoting 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    if out_shape is not None:
        if isinstance(out_shape, Variable):
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
            if not (_is_list_or_turple_(out_shape)):
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

407 408 409 410 411 412 413 414 415
            if len(input.shape) == 3:
                if len(out_shape) != 1:
                    raise ValueError(
                        "out_shape length should be 2 for input 3-D tensor")
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = float(scale)
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs)
    return out
L
littletomatodonkey 已提交
460 461


462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        axis (int | list): The axis along which the dropout is performed. Default None.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        mode(str): ['upscale_in_train'(default) | 'downscale_in_infer']

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

    Examples:
        We use ``p=0.5`` in the following description for simplicity.
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
            (4) You may note that logically `axis=None` means the dropout is performed in no axis of x,
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
            When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed
            in channel `N` and `C`, `H` and `W` is tied, i.e.
            paddle.nn.dropout(x, p, axis=[0,1])
            This is something we called dropout2d. Please refer to ``paddle.nn.functional.dropout2d``
            for more details.
            Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform
            dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.

        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False) 
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
            print(y_0.numpy())
            print(y_1.numpy())
            print(y_01.numpy())

    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a number")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'")
    if axis and not isinstance(axis, (int, list)):
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

        if in_dygraph_mode():
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
            out, mask = core.ops.dropout(
                x, 'dropout_prob', p, 'is_test', not training, 'fix_seed',
                seed is not None, 'seed', seed
                if seed is not None else 0, 'dropout_implementation', mode)
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        attrs = get_attrs(helper.main_program, p, not training, seed)

        helper.append_op(
            type='dropout',
            inputs={'X': [x]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
        if not in_dygraph_mode():
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
            if p == 1.:
                return layers.scale(x, scale=0.)

            scale_input = layers.scale(
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
            drop_axes = [axis] if isinstance(axis, int) else axis
            if max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should less than dimensions of x:{}, but get drop_axes value:{} " \
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
                    "length of axis should not greater than dimensions of x:{}, but get length of drop axes: {}".
                    format(len(input_shape), len(drop_axes)))
            mask_shape = [1] * len(input_shape)
            for i in drop_axes:
                mask_shape[i] = input_shape[i]

            #get mask
            random_tensor = layers.uniform_random(
                mask_shape, dtype='float32', min=0., max=1.0)
            p = layers.fill_constant(shape=[1], dtype='float32', value=p)
            keep_mask = layers.greater_equal(random_tensor, p)

            scale_input = layers.cast(scale_input, dtype)
            keep_mask = layers.cast(keep_mask, dtype)
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
            ret = layers.scale(
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    `NCHW` , `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is
                                    stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
                    print(x.numpy()[i,j,:,:])
                    print(y_train.numpy()[i,j,:,:]) # may all 0
                    print(y_test.numpy()[i,j,:,:])
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name)


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    ``NCDHW``, ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is
                                    stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x.numpy()[0,0,:,:,:])
            print(y_train.numpy()[0,0,:,:,:]) # may all 0
            print(y_test.numpy()[0,0,:,:,:])
    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name)


L
littletomatodonkey 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
        pad (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. 1. If input dimension is 3, then the pad has the form (pad_left,
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right, 
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form 
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
            
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'
        value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
           the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
                    
    Returns: a Tensor padded according to pad and mode and data type is same as input.
    Return Type: Tensor

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

            Case 1:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

            Case 2:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

            Case 3:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

    Code Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.nn.functional as F
            
            paddle.disable_static()
            
            # example 1
            x_shape = (1, 1, 3)
            x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
            tensor_x = paddle.to_tensor(x)
            y = F.pad(tensor_x, pad=[2, 3], value=1, mode='constant')
            print(y.numpy())
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
            
            # example 2
            x_shape = (1, 1, 2, 3)
            x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
            tensor_x = paddle.to_tensor(x)
            y = F.pad(tensor_x, pad=[1, 2, 1, 1], value=1, mode='circular')
            print(y.numpy())
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

    original_data_format = data_format
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
                x = unsqueeze(x, axes=unsqueezed_dim)
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
                x = unsqueeze(x, axes=unsqueezed_dim)
    else:
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
                x = unsqueeze(x, axes=unsqueezed_dim)
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
                x = unsqueeze(x, axes=unsqueezed_dim)

    if in_dygraph_mode():
        if isinstance(pad, Variable):
            pad = pad.numpy()
        out = core.ops.pad3d(x, "paddings", pad, "mode", mode, "value", value,
                             "data_format", data_format, "name", name)
    else:
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
        else:
            attrs['paddings'] = pad

        helper = LayerHelper('pad3d', **locals())

        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs)

    if len(unsqueezed_dim) != 0:
        out = squeeze(out, axes=unsqueezed_dim)

    return out


Y
Yang Zhang 已提交
977
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
978
    """
Y
Yang Zhang 已提交
979
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
980 981 982 983

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
Y
Yang Zhang 已提交
984
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
985 986
        eps(float): Small value to avoid division by zero. Default is 1e-8.
                    
Y
Yang Zhang 已提交
987
    Returns: a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000
    Return Type: Tensor

    Examples:
        .. code-block:: text
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1001
                axis = 1
L
littletomatodonkey 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)
Y
Yang Zhang 已提交
1017
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1018 1019 1020 1021
            print(result.numpy())
            # [0.99806249 0.9817672  0.94987036]
            
    """
Y
Yang Zhang 已提交
1022 1023 1024 1025
    w12 = sum(elementwise_mul(x1, x2), axis=axis)
    w1 = sum(elementwise_mul(x1, x1), axis=axis)
    w2 = sum(elementwise_mul(x2, x2), axis=axis)
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1026 1027
    cos_sim = w12 / n12
    return cos_sim