未验证 提交 89d7d866 编写于 作者: X xiaoting 提交者: GitHub

add intepolte_v2 (#26520)

* add intepolte_v2

* fix linear interp

* polish unittest, test=develop

* update code samples to 2.0 API, test=develop

* remove warning, test_develop

* add name in attrs, test=develop

* polish code, test=develop

* change Align to align, test=develop

* fix unittest in py3,test=develop

* fix coverage, test=develop

* fix coverage, test=develop

* fix for windows ci, test=develop

* fix coverage, test=develop
上级 fc5acdd0
此差异已折叠。
此差异已折叠。
此差异已折叠。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle
from paddle.fluid import Program, program_guard
from paddle.nn.functional import interpolate
def cubic_1(x, a):
return ((a + 2) * x - (a + 3)) * x * x + 1
def cubic_2(x, a):
return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a
def cubic_interp1d(x0, x1, x2, x3, t):
param = [0, 0, 0, 0]
a = -0.75
x_1 = t
x_2 = 1.0 - t
param[0] = cubic_2(x_1 + 1.0, a)
param[1] = cubic_1(x_1, a)
param[2] = cubic_1(x_2, a)
param[3] = cubic_2(x_2 + 1.0, a)
return x0 * param[0] + x1 * param[1] + x2 * param[2] + x3 * param[3]
def value_bound(input, w, h, x, y):
access_x = int(max(min(x, w - 1), 0))
access_y = int(max(min(y, h - 1), 0))
return input[:, :, access_y, access_x]
def bicubic_interp_np(input,
out_h,
out_w,
out_size=None,
actual_shape=None,
align_corners=True,
data_layout='kNCHW'):
"""trilinear interpolation implement in shape [N, C, H, W]"""
if data_layout == "NHWC":
input = np.transpose(input, (0, 3, 1, 2)) # NHWC => NCHW
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
batch_size, channel, in_h, in_w = input.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
if (align_corners):
ratio_h = (in_h - 1.0) / (out_h - 1.0)
else:
ratio_h = 1.0 * in_h / out_h
if out_w > 1:
if (align_corners):
ratio_w = (in_w - 1.0) / (out_w - 1.0)
else:
ratio_w = 1.0 * in_w / out_w
out = np.zeros((batch_size, channel, out_h, out_w))
for k in range(out_h):
if (align_corners):
h = ratio_h * k
else:
h = ratio_h * (k + 0.5) - 0.5
input_y = np.floor(h)
y_t = h - input_y
for l in range(out_w):
if (align_corners):
w = ratio_w * l
else:
w = ratio_w * (l + 0.5) - 0.5
input_x = np.floor(w)
x_t = w - input_x
for i in range(batch_size):
for j in range(channel):
coefficients = [0, 0, 0, 0]
for ii in range(4):
access_x_0 = int(max(min(input_x - 1, in_w - 1), 0))
access_x_1 = int(max(min(input_x + 0, in_w - 1), 0))
access_x_2 = int(max(min(input_x + 1, in_w - 1), 0))
access_x_3 = int(max(min(input_x + 2, in_w - 1), 0))
access_y = int(max(min(input_y - 1 + ii, in_h - 1), 0))
coefficients[ii] = cubic_interp1d(
input[i, j, access_y, access_x_0],
input[i, j, access_y, access_x_1],
input[i, j, access_y, access_x_2],
input[i, j, access_y, access_x_3], x_t)
out[i, j, k, l] = cubic_interp1d(
coefficients[0], coefficients[1], coefficients[2],
coefficients[3], y_t)
if data_layout == "NHWC":
out = np.transpose(out, (0, 2, 3, 1)) # NCHW => NHWC
return out.astype(input.dtype)
class TestBicubicInterpOp(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCHW'
self.init_test_case()
self.op_type = "bicubic_interp_v2"
input_np = np.random.random(self.input_shape).astype("float64")
if self.data_layout == "NCHW":
in_h = self.input_shape[2]
in_w = self.input_shape[3]
else:
in_h = self.input_shape[1]
in_w = self.input_shape[2]
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
if self.scale > 0.:
scale_h = scale_w = float(self.scale)
if isinstance(self.scale, list) and len(self.scale) == 1:
scale_w = scale_h = self.scale[0]
elif isinstance(self.scale, list) and len(self.scale) > 1:
scale_w = self.scale[1]
scale_h = self.scale[0]
out_h = int(in_h * scale_h)
out_w = int(in_w * scale_w)
else:
out_h = self.out_h
out_w = self.out_w
output_np = bicubic_interp_np(input_np, out_h, out_w, self.out_size,
self.actual_shape, self.align_corners,
self.data_layout)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method,
'align_corners': self.align_corners,
'data_layout': self.data_layout
}
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
if self.scale > 0.:
self.scale = [self.scale]
if isinstance(self.scale, list) and len(self.scale) == 1:
self.scale = [self.scale[0], self.scale[0]]
self.attrs['scale'] = self.scale
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [2, 3, 5, 5]
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True
class TestBicubicInterpCase1(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.align_corners = True
class TestBicubicInterpCase2(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [3, 3, 9, 6]
self.out_h = 10
self.out_w = 8
self.scale = 0.
self.align_corners = True
class TestBicubicInterpCase3(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [1, 1, 32, 64]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.align_corners = False
class TestBicubicInterpCase4(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.out_size = np.array([2, 2]).astype("int32")
self.align_corners = True
class TestBicubicInterpCase5(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [3, 3, 9, 6]
self.out_h = 11
self.out_w = 11
self.scale = 0.
self.out_size = np.array([6, 4]).astype("int32")
self.align_corners = False
class TestBicubicInterpCase6(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [1, 1, 32, 64]
self.out_h = 64
self.out_w = 32
self.scale = 0
self.out_size = np.array([64, 32]).astype("int32")
self.align_corners = False
class TestBicubicInterpSame(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [2, 3, 32, 64]
self.out_h = 32
self.out_w = 64
self.scale = 0.
self.align_corners = True
class TestBicubicInterpScale(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [2, 3, 32, 64]
self.out_h = 32
self.out_w = 64
self.scale = [1., 1.]
self.align_corners = True
class TestBicubicInterpDataLayout(TestBicubicInterpOp):
def init_test_case(self):
self.interp_method = 'bicubic'
self.input_shape = [2, 5, 5, 3]
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True
self.data_layout = "NHWC"
class TestBicubicInterpOpAPI(unittest.TestCase):
def test_case(self):
np.random.seed(200)
x_data = np.random.random((2, 3, 6, 6)).astype("float32")
dim_data = np.array([12]).astype("int32")
shape_data = np.array([12, 12]).astype("int32")
actual_size_data = np.array([12, 12]).astype("int32")
scale_data = np.array([2.0]).astype("float32")
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
dim = fluid.data(name="dim", shape=[1], dtype="int32")
shape_tensor = fluid.data(
name="shape_tensor", shape=[2], dtype="int32")
actual_size = fluid.data(
name="actual_size", shape=[2], dtype="int32")
scale_tensor = fluid.data(
name="scale_tensor", shape=[1], dtype="float32")
out1 = interpolate(
x, size=[12, 12], mode='bicubic', align_corners=False)
out2 = interpolate(
x, size=[12, dim], mode='bicubic', align_corners=False)
out3 = interpolate(
x, size=shape_tensor, mode='bicubic', align_corners=False)
out4 = interpolate(
x, size=[12, 12], mode='bicubic', align_corners=False)
out5 = interpolate(
x,
scale_factor=scale_tensor,
mode='bicubic',
align_corners=False)
out6 = interpolate(
x, scale_factor=2.0, mode='bicubic', align_corners=False)
out7 = interpolate(
x, scale_factor=[2.0, 2.0], mode='bicubic', align_corners=False)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
results = exe.run(
fluid.default_main_program(),
feed={
"x": x_data,
"dim": dim_data,
"shape_tensor": shape_data,
"actual_size": actual_size_data,
"scale_tensor": scale_data
},
fetch_list=[out1, out2, out3, out4, out5, out6, out7],
return_numpy=True)
expect_res = bicubic_interp_np(
x_data, out_h=12, out_w=12, align_corners=False)
for res in results:
self.assertTrue(np.allclose(res, expect_res))
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(x_data)
interp = interpolate(
x, size=[12, 12], mode='bicubic', align_corners=False)
dy_result = interp.numpy()
expect = bicubic_interp_np(
x_data, out_h=12, out_w=12, align_corners=False)
self.assertTrue(np.allclose(dy_result, expect))
class TestBicubicOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# the input of interpoalte must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
self.assertRaises(TypeError, interpolate, x1)
def test_mode_type():
# mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC"
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x, size=[12, 12], mode='UNKONWN', align_corners=False)
def test_input_shape():
x = fluid.data(name="x", shape=[2], dtype="float32")
out = interpolate(
x, size=[12, 12], mode='BICUBIC', align_corners=False)
def test_align_corcers():
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
interpolate(x, size=[12, 12], mode='BICUBIC', align_corners=3)
def test_out_shape():
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x, size=[12], mode='bicubic', align_corners=False)
def test_attr_data_format():
# for 5-D input, data_format only can be NCDHW or NDHWC
input = fluid.data(
name="input", shape=[2, 3, 6, 9, 4], dtype="float32")
out = interpolate(
input,
size=[4, 8, 4, 5],
mode='trilinear',
data_format='NHWC')
def test_actual_shape():
# the actual_shape must be Variable.
x = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
out = interpolate(
x, size=[12, 12], mode='BICUBIC', align_corners=False)
def test_scale_value():
# the scale must be greater than zero.
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x,
size=None,
mode='BICUBIC',
align_corners=False,
scale_factor=-2.0)
def test_attr_5D_input():
# for 5-D input, data_format only can be NCDHW or NDHWC
input = fluid.data(
name="input", shape=[2, 3, 6, 9, 4], dtype="float32")
out = interpolate(
input,
size=[4, 8, 4, 5],
mode='trilinear',
data_format='NDHWC')
def test_scale_type():
# the scale must be greater than zero.
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
scale = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
out = interpolate(
x,
size=None,
mode='bicubic',
align_corners=False,
scale_factor=scale)
def test_align_mode():
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x,
size=None,
mode='nearest',
align_corners=False,
align_mode=2,
scale_factor=1.0)
def test_outshape_and_scale():
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x,
size=None,
mode='bicubic',
align_corners=False,
scale_factor=None)
def test_align_corners_and_nearest():
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x,
size=None,
mode='nearest',
align_corners=True,
scale_factor=None)
def test_scale_shape():
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x,
size=None,
mode='nearest',
align_corners=False,
scale_factor=[1, 2, 2])
def test_scale_value():
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
out = interpolate(
x,
size=None,
mode='trilinear',
align_corners=False,
scale_factor=[1, 2, 2])
self.assertRaises(ValueError, test_mode_type)
self.assertRaises(ValueError, test_input_shape)
self.assertRaises(TypeError, test_align_corcers)
self.assertRaises(ValueError, test_attr_data_format)
self.assertRaises(TypeError, test_actual_shape)
self.assertRaises(ValueError, test_scale_value)
self.assertRaises(ValueError, test_out_shape)
self.assertRaises(ValueError, test_attr_5D_input)
self.assertRaises(TypeError, test_scale_type)
self.assertRaises(ValueError, test_align_mode)
self.assertRaises(ValueError, test_outshape_and_scale)
self.assertRaises(ValueError, test_align_corners_and_nearest)
self.assertRaises(ValueError, test_scale_shape)
self.assertRaises(ValueError, test_scale_value)
if __name__ == "__main__":
unittest.main()
......@@ -21,7 +21,7 @@ import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
from paddle.nn.functional import *
from paddle.nn.functional import interpolate
def linear_interp_np(input,
......
......@@ -17,7 +17,7 @@ import unittest
from op_test import OpTest
import numpy as np
import paddle.fluid.core as core
from paddle.nn.functional import *
from paddle.nn.functional import avg_pool2d, max_pool2d
import paddle.fluid as fluid
import paddle
......
......@@ -73,6 +73,7 @@ NO_FP64_CHECK_GRAD_OP_LIST = [
'mish', \
'transpose2', \
'trilinear_interp', \
'trilinear_interp_v2', \
'var_conv_2d', \
'warpctc', \
'bilateral_slice'
......
......@@ -15,6 +15,7 @@
NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST = [
'affine_channel', \
'bilinear_interp', \
'bilinear_interp_v2',\
'bilinear_tensor_product', \
'conv2d', \
'conv3d', \
......@@ -45,4 +46,6 @@ NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST = [
'cudnn_lstm'
]
NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST = ['bilinear_interp']
NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST = ['bilinear_interp',\
'bilinear_interp_v2'
]
......@@ -88,6 +88,8 @@ from .layer.common import Embedding #DEFINE_ALIAS
from .layer.common import Linear #DEFINE_ALIAS
from .layer.common import Flatten #DEFINE_ALIAS
from .layer.common import UpSample #DEFINE_ALIAS
from .layer.common import UpsamplingNearest2d #DEFINE_ALIAS
from .layer.common import UpsamplingBilinear2d #DEFINE_ALIAS
from .layer.common import Bilinear #DEFINE_ALIAS
from .layer.common import Dropout #DEFINE_ALIAS
from .layer.common import Dropout2D #DEFINE_ALIAS
......
......@@ -58,6 +58,8 @@ from .common import Embedding #DEFINE_ALIAS
from .common import Linear #DEFINE_ALIAS
from .common import Flatten #DEFINE_ALIAS
from .common import UpSample #DEFINE_ALIAS
from .common import UpsamplingNearest2d #DEFINE_ALIAS
from .common import UpsamplingBilinear2d #DEFINE_ALIAS
from .common import Dropout #DEFINE_ALIAS
from .common import Dropout2D #DEFINE_ALIAS
from .common import Dropout3D #DEFINE_ALIAS
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册