common.py 75.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16 17
import paddle
from ...fluid.framework import in_dygraph_mode, default_main_program
X
xiaoting 已提交
18
from paddle.fluid.layer_helper import LayerHelper
19 20 21 22
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
23 24
from ...fluid.layers import core
from ...fluid import dygraph_utils
25
# TODO: define the common functions to build a neural network  
Z
zhiboniu 已提交
26
from ...fluid.layers import unfold  # noqa: F401
27 28
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
29 30 31
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
32
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
33
from ...fluid.framework import in_dygraph_mode, _varbase_creator
X
xiaoting 已提交
34

35 36
from ...fluid.framework import in_dygraph_mode
from ...fluid import core, dygraph_utils
37 38
from ...fluid import core, layers
from ...fluid.data_feeder import check_variable_and_dtype
W
wanghuancoder 已提交
39
from paddle import _C_ops
40

41 42
__all__ = []

X
xiaoting 已提交
43

X
xiaoting 已提交
44
def interpolate(x,
45 46 47 48
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
49
                align_mode=0,
50 51
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
52
    """
S
swtkiwi 已提交
53

X
xiaoting 已提交
54
    This op resizes a batch of images.
55 56
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
57
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
58 59
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
60
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
61

X
xiaoting 已提交
62
    Supporting resample methods:
63 64 65 66 67
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
68
        'area': Area interpolation
69 70 71 72

    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
X
xiaoting 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
87
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
88 89 90 91 92 93 94
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

95 96 97 98 99 100
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to 
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or 
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
101 102 103 104
    Example:

    .. code-block:: text

105
        For scale_factor:
X
xiaoting 已提交
106 107 108 109 110
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

111 112 113 114 115 116 117 118 119 120 121
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        
X
xiaoting 已提交
122
        Nearest neighbor interpolation:
X
xiaoting 已提交
123

X
xiaoting 已提交
124 125 126 127 128
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
129

X
xiaoting 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

171 172 173
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
    
X
xiaoting 已提交
174 175
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
176
    
X
xiaoting 已提交
177 178
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
179
    
X
xiaoting 已提交
180 181
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
182
    
X
xiaoting 已提交
183 184
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
185
    
X
xiaoting 已提交
186
    Parameters:
X
xiaoting 已提交
187
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
188
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
189
        size (list|tuple|Tensor|None): Output shape of image resize
190 191
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
192
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
193
             If a Tensor, its dimensions size should be a 1.
194 195 196
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
197
             Default: None.
198
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
199
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
200 201
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
202
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
203 204 205 206
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
207
        data_format (str, optional): Specify the data format of the input, and the data format of the output
208
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
209 210 211
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
212 213 214
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
215
    Returns:
216
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
217 218 219
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
X
xiaoting 已提交
220
        TypeError: size should be a list or tuple or Tensor.
221
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
222
                    'trilinear', 'bicubic', 'area' or 'nearest' currently.
223 224 225 226 227 228 229 230
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
X
xiaoting 已提交
231 232
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
233 234
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.

X
xiaoting 已提交
235 236 237 238 239
    Examples:
        .. code-block:: python

	    import paddle
	    import numpy as np
X
xiaoting 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            import paddle.nn.functional as F
            
            # given out size
            input_data = np.random.rand(2,3,6,10).astype("float32")
            x = paddle.to_tensor(input_data)
            output_1 = F.interpolate(x=x, size=[12,12])
    	    print(output_1.shape)
	    # [2L, 3L, 12L, 12L]
            
            # given scale
            output_2 = F.interpolate(x=x, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
            
            # bilinear interp
            output_3 = F.interpolate(x=x, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
258
    """
259 260 261 262 263 264 265 266 267 268
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
269
        'AREA',
270
    ]
X
xiaoting 已提交
271 272
    if resample not in resample_methods:
        raise ValueError(
273
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
274
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
275

X
xiaoting 已提交
276
    if resample in ['LINEAR'] and len(x.shape) != 3:
277
        raise ValueError("'linear' only support 3-D tensor.")
278

X
xiaoting 已提交
279
    if resample in ['BILINEAR', 'NEAREST', 'BICUBIC'] and len(x.shape) != 4:
X
xiaoting 已提交
280
        raise ValueError(
281
            "'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.")
X
xiaoting 已提交
282
    if resample == 'TRILINEAR' and len(x.shape) != 5:
283 284 285 286
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
287 288 289

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
290

X
xiaoting 已提交
291 292
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
293 294 295 296
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
297

X
xiaoting 已提交
298
    if resample == 'AREA':
299 300
        if isinstance(size, list) or isinstance(size, tuple) or isinstance(
                size, Variable):
X
xiaoting 已提交
301 302 303 304 305 306 307 308
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
309

X
xiaoting 已提交
310
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
311
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
312
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
313 314
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
315
            " received but only `NCW` or `NWC` supported for 3-D input.")
X
xiaoting 已提交
316
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
317 318 319
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
X
xiaoting 已提交
320
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
321 322 323 324 325 326 327
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

328
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
329
        data_layout = 'NCHW'
330
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
331 332
        data_layout = 'NHWC'

X
xiaoting 已提交
333 334 335 336
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
337 338 339 340 341 342 343 344 345 346
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

347 348
    out_shape = size
    scale = scale_factor
X
xiaoting 已提交
349

350 351
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
352
    if out_shape is not None:
353
        if isinstance(out_shape, Variable) and not in_dygraph_mode():
X
xiaoting 已提交
354 355 356
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
357 358 359 360 361 362
            if in_dygraph_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
363
            if not (_is_list_or_turple_(out_shape)):
364
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
393
            if len(x.shape) == 3:
394 395
                if len(out_shape) != 1:
                    raise ValueError(
396
                        "size length should be 2 for input 3-D tensor")
397 398 399 400 401
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
402
            if len(x.shape) == 4:
X
xiaoting 已提交
403
                if len(out_shape) != 2:
404
                    raise ValueError("size length should be 2 for "
X
xiaoting 已提交
405 406 407 408 409 410 411 412
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
413
            if len(x.shape) == 5:
X
xiaoting 已提交
414
                if len(out_shape) != 3:
415
                    raise ValueError("size length should be 3 for "
X
xiaoting 已提交
416 417 418 419 420 421 422 423 424 425 426 427
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
428 429
        if in_dygraph_mode() and isinstance(scale, Variable):
            scale = list(scale.numpy())
X
xiaoting 已提交
430 431 432 433 434 435
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
436 437 438 439
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
440
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
441 442 443 444 445 446 447 448
            if len(scale) != len(x.shape) - 2:
                raise ValueError("scale_shape length should be {} for "
                                 "input {}-D tensor.".format(
                                     len(x.shape) - 2, len(x.shape)))
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
449 450
        else:
            raise TypeError(
451 452
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
453 454 455 456 457 458 459 460 461

    if in_dygraph_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
W
wanghuancoder 已提交
462
            out = _C_ops.linear_interp_v2(x, *dy_attr)
463
        elif resample_type == "bilinear":
W
wanghuancoder 已提交
464
            out = _C_ops.bilinear_interp_v2(x, *dy_attr)
465
        elif resample_type == "trilinear":
W
wanghuancoder 已提交
466
            out = _C_ops.trilinear_interp_v2(x, *dy_attr)
467
        elif resample_type == "nearest":
W
wanghuancoder 已提交
468
            out = _C_ops.nearest_interp_v2(x, *dy_attr)
469
        elif resample_type == "bicubic":
W
wanghuancoder 已提交
470
            out = _C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
471
        return out
X
xiaoting 已提交
472 473
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
X
xiaoting 已提交
474
        type='{}_interp_v2'.format(resample_type),
X
xiaoting 已提交
475 476 477 478
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs)
    return out
L
littletomatodonkey 已提交
479 480


X
xiaoting 已提交
481 482 483 484 485 486 487 488 489 490
def upsample(x,
             size=None,
             scale_factor=None,
             mode='nearest',
             align_corners=False,
             align_mode=0,
             data_format='NCHW',
             name=None):
    """
    This op resizes a batch of images.
491

X
xiaoting 已提交
492 493 494
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
495 496
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
521

X
xiaoting 已提交
522 523 524
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
525

X
xiaoting 已提交
526 527 528
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
529 530 531 532 533 534 535

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    Example:
    .. code-block:: text
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
        
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
    
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
    
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
626
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
627
             If a Tensor , its dimensions size should be a 1.
628 629 630 631
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if 
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
             Default: None.
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
        TypeError: size should be a list or tuple or Tensor.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
        Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.nn.functional as F

X
xiaoting 已提交
675
            input_data = np.random.rand(2,3,6,10).astype("float32")
X
xiaoting 已提交
676
            input = paddle.to_tensor(input_data)
X
xiaoting 已提交
677
            output = F.upsample(x=input, size=[12,12])
X
xiaoting 已提交
678 679 680 681 682 683 684 685
            print(output.shape)
            # [2L, 3L, 12L, 12L]

    """
    return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
                       data_format)


686 687 688 689
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
690
    See :ref:`api_nn_Bilinear` for details and output shape.
691 692 693 694 695 696 697 698 699 700

    Parameters:
       x1 (Tensor): the first input tensor, it's data type should be float32, float64.
       x2 (Tensor): the second input tensor, it's data type should be float32, float64.
       weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
       bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
701
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

    Examples:
       .. code-block:: python

        import paddle
        import numpy
        import paddle.nn.functional as F

        x1 = numpy.random.random((5, 5)).astype('float32')
        x2 = numpy.random.random((5, 4)).astype('float32')
        w = numpy.random.random((1000, 5, 4)).astype('float32')
        b = numpy.random.random((1, 1000)).astype('float32')

        result = F.bilinear(paddle.to_tensor(x1), paddle.to_tensor(x2), paddle.to_tensor(w), paddle.to_tensor(b))           # result shape [5, 1000]

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
720
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    return out


738 739 740 741 742 743 744 745 746 747 748 749 750 751
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
752 753
        p (float|int): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
754
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
755
        mode(str): ['upscale_in_train'(default) | 'downscale_in_infer'].
756 757 758 759 760 761 762 763 764 765

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
766
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
767 768 769 770

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

771

772 773
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
774

775
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
776 777 778

        ..  code-block:: text

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

804 805


806
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
807 808 809

        ..  code-block:: text

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
838
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
839 840 841 842 843 844 845 846 847 848
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
849 850 851

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
852 853

        .. code-block:: python
854

855 856 857 858 859 860 861 862 863 864
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False) 
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
865 866 867 868 869 870
            print(x)
            print(y_train)
            print(y_test)
            print(y_0)
            print(y_1)
            print(y_01)
871 872

    """
873 874 875 876
    # fast return for p == 0
    if p == 0:
        return x

877 878 879 880 881 882 883
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a number")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'")
884
    if axis and not isinstance(axis, (int, list, tuple)):
885 886 887 888 889 890 891 892 893
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

        if in_dygraph_mode():
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
W
wanghuancoder 已提交
894
            out, mask = _C_ops.dropout(
895 896 897 898 899 900 901 902 903 904 905 906 907
                x, 'dropout_prob', p, 'is_test', not training, 'fix_seed',
                seed is not None, 'seed', seed
                if seed is not None else 0, 'dropout_implementation', mode)
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

908 909 910 911 912 913 914 915 916 917 918 919
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
        attrs = get_attrs(helper.main_program, p, not training, seed)

        helper.append_op(
            type='dropout',
            inputs={'X': [x]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
        if not in_dygraph_mode():
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
            if p == 1.:
936
                return paddle.scale(x, scale=0.)
937

938
            scale_input = paddle.scale(
939 940 941 942
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
943
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
944 945
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} " \
946 947 948
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
949
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".
950 951 952 953 954 955
                    format(len(input_shape), len(drop_axes)))
            mask_shape = [1] * len(input_shape)
            for i in drop_axes:
                mask_shape[i] = input_shape[i]

            #get mask
956
            random_tensor = paddle.uniform(
957 958
                mask_shape, dtype='float32', min=0., max=1.0)
            p = layers.fill_constant(shape=[1], dtype='float32', value=p)
959
            keep_mask = paddle.greater_equal(random_tensor, p)
960

961 962
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
963 964 965
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
966
            ret = paddle.scale(
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
984
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
985 986 987 988 989
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

990

991 992
    Examples:
        .. code-block:: python
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
                    print(x.numpy()[i,j,:,:])
                    print(y_train.numpy()[i,j,:,:]) # may all 0
                    print(y_test.numpy()[i,j,:,:])
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name)


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1039
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1040 1041 1042 1043 1044
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1045

1046 1047
    Examples:
        .. code-block:: python
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x.numpy()[0,0,:,:,:])
            print(y_train.numpy()[0,0,:,:,:]) # may all 0
            print(y_test.numpy()[0,0,:,:,:])
    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name)


1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1098

1099 1100 1101 1102 1103 1104 1105
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
1106 1107
            print(x)
            print(y_train)
1108
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
1109
            print(y_test)
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'alpha_dropout')

    if training:
1121
        if p == 1:
1122
            return paddle.scale(x, scale=0.)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        #get transformation params
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
        a = ((1 - p) * (1 + p * alpha_p**2))**-0.5
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

        #get mask
1134
        random_tensor = paddle.uniform(
1135 1136
            input_shape, dtype='float32', min=0., max=1.0)
        p = layers.fill_constant(shape=[1], dtype='float32', value=p)
1137 1138 1139
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1140 1141 1142 1143 1144 1145
            layers.fill_constant(
                shape=input_shape, dtype=dtype, value=1.),
            keep_mask)

        #apply mask
        b = layers.fill_constant(shape=[1], dtype=dtype, value=b)
1146 1147 1148 1149
        y = paddle.add(paddle.multiply(x, keep_mask),
                       paddle.scale(
                           drop_mask, scale=alpha_p))
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1150 1151 1152 1153 1154
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1155 1156 1157
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1158 1159 1160
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1161 1162 1163 1164 1165
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1166 1167 1168 1169
        pad (Tensor | List[int] | Tuple[int]): The padding size with data type int.
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will 
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
L
littletomatodonkey 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right, 
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form 
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'
        value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
           the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
                    
    Returns: a Tensor padded according to pad and mode and data type is same as input.
    Return Type: Tensor

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1196 1197 1198 1199 1200 1201 1202 1203 1204
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1205 1206 1207 1208 1209 1210 1211 1212
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1213
            Case 2:
L
littletomatodonkey 已提交
1214 1215 1216 1217 1218 1219 1220
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1221
            Case 3:
L
littletomatodonkey 已提交
1222 1223 1224 1225 1226 1227 1228
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1229
            Case 4:
L
littletomatodonkey 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

    Code Examples:
        .. code-block:: python
L
littletomatodonkey 已提交
1239

L
littletomatodonkey 已提交
1240 1241 1242 1243 1244 1245
            import numpy as np
            import paddle
            import paddle.nn.functional as F
            
            # example 1
            x_shape = (1, 1, 3)
L
littletomatodonkey 已提交
1246
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
1247
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1248
            print(y)
L
littletomatodonkey 已提交
1249
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1250
            
L
littletomatodonkey 已提交
1251
            # example 2
1252 1253 1254 1255 1256 1257 1258
            x_shape = (1, 1, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
            
            # example 3
L
littletomatodonkey 已提交
1259
            x_shape = (1, 1, 2, 3)
L
littletomatodonkey 已提交
1260 1261 1262
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

littletomatodonkey's avatar
littletomatodonkey 已提交
1278 1279
    if mode == "constant" and isinstance(pad, (
            list, tuple)) and len(pad) == x_dim * 2:
L
littletomatodonkey 已提交
1280 1281
        return layers.pad(x, pad, pad_value=value)

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    assert x_dim in [
        3, 4, 5
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
    assert data_format in supported_format_map[x_dim], \
    "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format)

L
littletomatodonkey 已提交
1295 1296 1297 1298 1299 1300 1301 1302
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
1303
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1304 1305 1306
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
1307
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1308 1309 1310 1311 1312
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
1313
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1314 1315 1316
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
1317
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1318
    else:
1319
        pad = list(pad)
L
littletomatodonkey 已提交
1320 1321 1322 1323 1324
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1325
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1326 1327 1328
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1329
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1330 1331 1332 1333 1334
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1335
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1336 1337 1338
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1339
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1340 1341 1342 1343

    if in_dygraph_mode():
        if isinstance(pad, Variable):
            pad = pad.numpy()
W
wanghuancoder 已提交
1344 1345
        out = _C_ops.pad3d(x, "paddings", pad, "mode", mode, "value", value,
                           "data_format", data_format, "name", name)
L
littletomatodonkey 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    else:
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
        else:
            attrs['paddings'] = pad

        helper = LayerHelper('pad3d', **locals())

        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs)

    if len(unsqueezed_dim) != 0:
1363
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1364 1365 1366 1367

    return out


Y
Yang Zhang 已提交
1368
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1369
    """
Y
Yang Zhang 已提交
1370
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1371 1372 1373 1374

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
Y
Yang Zhang 已提交
1375
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1376 1377
        eps(float): Small value to avoid division by zero. Default is 1e-8.
                    
Y
Yang Zhang 已提交
1378
    Returns: a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1379 1380 1381 1382
    Return Type: Tensor

    Examples:
        .. code-block:: text
1383

L
littletomatodonkey 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1393
                axis = 1
L
littletomatodonkey 已提交
1394 1395 1396 1397 1398
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1399

L
littletomatodonkey 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408
            import paddle
            import paddle.nn as nn
            import numpy as np

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)
Y
Yang Zhang 已提交
1409
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1410
            print(result)
L
littletomatodonkey 已提交
1411 1412 1413
            # [0.99806249 0.9817672  0.94987036]
            
    """
1414 1415 1416
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1417
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1418 1419
    cos_sim = w12 / n12
    return cos_sim
1420 1421 1422


def linear(x, weight, bias=None, name=None):
1423
    r"""
1424

1425 1426
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1427 1428 1429

    .. math::

1430
        Out = XW + b
1431

1432
    where :math:`W` is the weight and :math:`b` is the bias.
1433

1434 1435 1436 1437 1438 1439 1440
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` , 
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1441

1442 1443 1444 1445 1446 1447 1448
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1449 1450

    Returns:
1451 1452
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1453 1454 1455 1456 1457 1458

    Examples:
        .. code-block:: python
          
          import paddle
          
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1472 1473
    """
    if in_dygraph_mode():
1474 1475
        pre_bias = _C_ops.matmul_v2(x, weight, 'trans_x', False, 'trans_y',
                                    False)
1476 1477 1478 1479

        if bias is None:
            return pre_bias

W
wanghuancoder 已提交
1480
        return _C_ops.elementwise_add(pre_bias, bias)
1481 1482 1483 1484 1485 1486 1487 1488 1489
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
1490
        attrs = {'trans_x': False, 'trans_y': False}
1491 1492
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
1493
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res
1505 1506 1507


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1508
    r"""
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    Label smoothing is a mechanism to regularize the classifier layer and is called
    label-smoothing regularization (LSR).

    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1560
            print(output)
1561 1562 1563 1564 1565 1566 1567 1568
            
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")

    if in_dygraph_mode():
W
wanghuancoder 已提交
1569
        return _C_ops.label_smooth(label, prior_dist, 'epsilon', float(epsilon))
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'label_smooth')

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
1584 1585


G
Guoxia Wang 已提交
1586
def class_center_sample(label, num_classes, num_samples, group=None):
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
    The process of sampling subset class centers is straightforward: 

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly 
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
    
    .. hint::
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive 
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
    
        The API supports CPU, single GPU and multi GPU.

    Args:
G
Guoxia Wang 已提交
1607 1608
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1609
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1610
        num_samples (int): A positive integer to specify the number of class center to sample.
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
        group (Group, optional): The abstract representation of group.
            See paddle.distributed.collective.Group. Default is ``None``.

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1621
        :name: code-example1
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
1644
        :name: code-example2
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
        
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    rank = 0
    nranks = 1
    if core.is_compiled_with_dist():
        parallel_env = paddle.distributed.ParallelEnv()
        global_rank = parallel_env.rank
        rank = global_rank if group is None else group.get_group_rank(
            global_rank)
        nranks = parallel_env.world_size if group is None else group.nranks

    if num_samples > num_classes:
        raise ValueError(
            'Expected num_samples less than or equal to {}, got num_samples {}'.
            format(num_classes, num_samples))

G
Guoxia Wang 已提交
1703 1704 1705
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
1706
    if label_size != -1 and label_size < 1:
G
Guoxia Wang 已提交
1707
        raise ValueError('Expected label_size > 0 \
1708
             (got label_size: {})'.format(label_size))
G
Guoxia Wang 已提交
1709 1710 1711 1712

    label_dims = len(list(label.shape))
    if label_dims != 1:
        raise ValueError('Expected label_dims == 1 \
1713
             (got label_dims: {})'.format(label_dims))
G
Guoxia Wang 已提交
1714 1715

    seed = None
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

    if in_dygraph_mode():
        remapped_label, sampled_class_center = core.ops.class_center_sample(
            label, 'num_classes', num_classes, 'num_samples', num_samples,
            'ring_id', ring_id, 'nranks', nranks, 'rank', rank, 'fix_seed',
            seed is not None, 'seed', seed if seed is not None else 0)
        return remapped_label, sampled_class_center

    check_variable_and_dtype(label, 'label', ['int64', 'int32'],
                             'class_center_sample')
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
        dtype=label.dtype)
    sampled_class_center = helper.create_variable_for_type_inference(
        dtype=label.dtype)
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
    return remapped_label, sampled_class_center