collective.py 66.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
17
from datetime import timedelta
18
from ..fluid.layer_helper import LayerHelper
19
from ..fluid.framework import Variable
20
from ..fluid.framework import in_dygraph_mode
21
from ..fluid.framework import OpProtoHolder
J
Jiabin Yang 已提交
22
from ..fluid.framework import _non_static_mode
23
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
24
from ..fluid.framework import _varbase_creator
25 26 27 28
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
29 30
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
31
from ..fluid.dygraph import layers
32 33 34 35
from ..fluid.dygraph.parallel import prepare_context
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
36
from paddle import _C_ops
J
Jiangxinz 已提交
37
import paddle.fluid.dygraph_utils as dygraph_utils
38

39
__all__ = []
40 41 42


class ReduceOp:
L
lilong12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
74 75 76 77
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3
78
    AVG = 4
79 80


K
kuizhiqing 已提交
81 82 83 84
class Group():
    """
    The abstract representation of group.
    """
85

86
    def __init__(self, rank, rank_num, id=0, ranks=[], pg=None, name=None):
87 88
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
89 90
        self.id = id
        self.ranks = ranks
91 92
        self.pg = pg
        self.name = name
K
kuizhiqing 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

107 108 109 110
    @property
    def process_group(self):
        return self.pg

111 112 113 114
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
115 116
        debug_str += "; name: "
        debug_str += self.name if self.name else "None"
117 118
        return debug_str

K
kuizhiqing 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}

134 135 136 137 138 139 140
# group map by name : the map of all groups from their names
# Dict[name, Group]
_group_map_by_name = {}

# Name of the default group for init_parallel_env
_default_group_name = "_default_pg"

141
_valid_backend_list = ['nccl', 'gloo', 'hccl', 'heter']
142 143 144
_default_store = None  # the default tcp store
_default_backend = None

K
kuizhiqing 已提交
145

L
lilong12 已提交
146 147 148 149 150 151 152 153 154 155
def _set_default_backend(backend):
    global _default_backend
    _default_backend = backend


def _set_default_store(store):
    global _default_store
    _default_store = store


K
kuizhiqing 已提交
156 157 158 159
def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
160 161
        _group_map[0] = Group(
            genv.rank, genv.world_size, ranks=list(range(genv.world_size)))
K
kuizhiqing 已提交
162 163 164 165 166 167 168
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


169 170 171 172 173 174
def _get_group_map_by_name():
    global _group_map_by_name
    return _group_map_by_name


def _get_default_group():
L
lilong12 已提交
175
    global _group_map_by_name
176 177 178 179 180 181
    assert _default_group_name in _group_map_by_name, (
        "Call paddle.distributed.init_parallel_env first "
        "to initialize the distributed environment.")
    return _get_group_map_by_name()[_default_group_name]


L
lilong12 已提交
182 183 184 185 186 187 188 189 190 191 192 193
def _set_group_map(gid, group):
    global _group_map
    assert gid not in _group_map
    _group_map[gid] = group


def _set_group_map_by_name(name, group):
    global _group_map_by_name
    assert name not in _group_map_by_name
    _group_map_by_name[name] = group


K
kuizhiqing 已提交
194 195 196 197 198 199 200 201 202 203
def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
204
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
219
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
220 221


222 223 224 225 226 227 228
def _new_process_group_impl(backend,
                            store,
                            rank,
                            world_size,
                            group_name,
                            pg_options,
                            group_id=0):
229
    pg = None
230
    genv = _get_global_env()
L
lilong12 已提交
231
    assert backend in _valid_backend_list, "Unsupported backend: %s." % backend
232
    if backend == "gloo":
233 234
        place = core.CPUPlace()
        pg = core.ProcessGroupGloo(store, rank, world_size, place, group_id)
235
    elif backend == "nccl":
236 237
        place = core.CUDAPlace(genv.device_id)
        pg = core.ProcessGroupNCCL(store, rank, world_size, place, group_id)
238
    elif backend == "hccl":
239 240
        place = core.NPUPlace(genv.device_id)
        pg = core.ProcessGroupHCCL(store, rank, world_size, place, group_id)
241
    elif backend == "heter":
242 243 244 245 246
        place = None
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(genv.device_id)
        elif core.is_compiled_with_npu():
            place = core.NPUPlace(genv.device_id)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        cluster_id = int(os.getenv("CLUSTER_ID", "-1"))
        assert cluster_id >= 0, "please set the CLUSTER_ID variable."
        cluster_size = os.getenv("CLUSTER_SIZE", None)
        assert cluster_size, "please set the CLUSTER_SIZE variable."
        cluster_size = cluster_size.split(",")
        cluster_size = [int(s) for s in cluster_size]
        switch_ep = os.getenv("CLUSTER_SWITCH", None)
        assert switch_ep, "please set the CLUSTER_SWITCH variable."
        cluster_size_cumsum = np.cumsum(cluster_size)
        cluster_offset = 0 if cluster_id == 0 else cluster_size_cumsum[
            cluster_id - 1]
        global_rank = cluster_offset + rank
        global_world_size = cluster_size_cumsum[-1]
        pg = core.ProcessGroupHeter(
            store,
            rank=global_rank,
            world_size=global_world_size,
264
            place=place,
265 266 267 268 269 270 271
            gid=0,
            local_rank=rank,
            local_size=world_size,
            gloo_rank=cluster_id,
            gloo_size=len(cluster_size),
            with_switch=True,
            switch_endpoint=switch_ep)
272 273 274 275

    return pg


S
ShenLiang 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
300
    if in_dygraph_mode():
301 302 303 304 305
        group = _get_default_group() if group is None else group
        task = group.process_group.barrier()
        task.wait()
        return

S
ShenLiang 已提交
306 307 308
    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
J
Jiabin Yang 已提交
309
    if _non_static_mode():
W
wanghuancoder 已提交
310
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
311 312 313

    op_type = 'barrier'

S
ShenLiang 已提交
314 315 316 317 318 319 320 321 322 323
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
324 325 326
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
327
    Creates a new distributed communication group.
K
kuizhiqing 已提交
328 329

    Args:
K
kuizhiqing 已提交
330
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
331 332 333
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
334
        Group: The group instance.
K
kuizhiqing 已提交
335 336 337 338 339 340 341

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
342 343 344
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
345 346

    """
347
    global _group_map
L
lilong12 已提交
348
    if in_dygraph_mode():
349 350 351 352 353 354
        global _default_group_name
        gid = _new_ring_id()
        group_name = _default_group_name + str(gid)
        global_group = _get_default_group()
        global_rank = global_group.rank
        global_ranks = global_group.ranks
L
lilong12 已提交
355
        backend = _default_backend if backend is None else backend
356 357 358 359 360 361 362
        if ranks is None:
            ranks = global_ranks
        assert len(ranks) <= len(global_ranks), (
            "Size of new group must be less than or "
            "equal to that of the default global group.")
        size = len(ranks)
        ranks = sorted(ranks)
L
lilong12 已提交
363
        if global_rank in ranks and size > 1:
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
            rank = ranks.index(global_rank)
            pg = _new_process_group_impl(
                backend,
                _default_store,
                rank,
                size,
                group_name,
                pg_options=None,
                group_id=gid)
        else:
            rank = -1
            pg = None
        group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name)
        _group_map_by_name[group_name] = group
        _group_map[gid] = group

        return group
K
kuizhiqing 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
415 416 417 418
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
419 420 421 422
            elif core.is_compiled_with_mlu():
                place = core.MLUPlace(genv.device_id)
                core.CNCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
423 424 425 426 427 428 429
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
430
    tmp = paddle.to_tensor(
J
Jiabin Yang 已提交
431
        [1], dtype="int32") if _non_static_mode() else fill_constant(
432
            [0], dtype="int32", value="1")
433 434
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
435 436
    return gp

437

K
kuizhiqing 已提交
438 439 440 441 442 443 444 445
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
446 447
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
448 449 450 451 452 453 454 455 456 457

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
458
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

J
Jiabin Yang 已提交
477
    if _non_static_mode():
W
wanghuancoder 已提交
478
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
479 480 481 482 483 484 485 486

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
487

488

K
kuizhiqing 已提交
489
def _sync_comm_stream(tensor, ring_id=0):
490

J
Jiabin Yang 已提交
491
    if _non_static_mode():
W
wanghuancoder 已提交
492
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
493

K
kuizhiqing 已提交
494
    op_type = 'c_sync_comm_stream'
495

K
kuizhiqing 已提交
496 497 498 499 500 501 502 503 504
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
505 506 507
    """

    Broadcast a tensor from the source to all others.
508 509 510 511 512 513 514
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
515 516 517 518 519

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
520
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
521 522
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
523 524 525 526 527 528 529

    Returns:
        None.

    Examples:
        .. code-block:: python

530
            # required: distributed
531 532 533 534 535 536 537 538 539 540 541 542 543 544
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
545
    """
K
kuizhiqing 已提交
546 547 548 549 550 551 552

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
553
    if in_dygraph_mode():
554 555 556 557 558 559 560 561 562 563 564
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        assert gsrc >= 0, ("src rank out of group, need global rank")
        task = group.process_group.broadcast(tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

    ring_id = ring_id = 0 if group is None else group.id
K
kuizhiqing 已提交
565
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
566
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
567

J
Jiabin Yang 已提交
568
    if _non_static_mode():
W
wanghuancoder 已提交
569 570 571
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
572 573 574 575 576 577 578 579 580 581 582 583

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
584 585 586
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
587 588 589
        })


K
kuizhiqing 已提交
590
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
591 592 593
    """

    Reduce a tensor over all ranks so that all get the result.
594 595 596 597 598 599 600 601
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
602 603 604 605

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
606
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
607
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
608 609
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
610 611 612 613 614 615 616

    Returns:
        None.

    Examples:
        .. code-block:: python

617
            # required: distributed
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
633
    """
K
kuizhiqing 已提交
634 635 636
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
637
    if in_dygraph_mode():
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
        else:
            raise ValueError("Unknown reduce_op type for allreduce.")
        group = _get_default_group() if group is None else group
        task = group.process_group.allreduce(tensor, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

K
kuizhiqing 已提交
654
    ring_id = 0 if group is None else group.id
J
Jiabin Yang 已提交
655
    if _non_static_mode():
656
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
657 658
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
659
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
660 661
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
662
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
663 664
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
665
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
666 667
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
668 669 670 671 672 673 674 675 676 677 678 679 680 681
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
682 683
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
684 685 686 687 688
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
689 690
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
691 692


K
kuizhiqing 已提交
693
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
694 695
    """

696 697 698 699 700 701 702 703
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
704 705 706 707 708

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
709
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
710
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
711 712
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
713 714 715 716 717 718 719

    Returns:
        None.

    Examples:
        .. code-block:: python

720
            # required: distributed
721 722 723 724 725 726 727 728 729 730 731 732 733 734
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
735
    """
K
kuizhiqing 已提交
736 737 738
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
739
    if in_dygraph_mode():
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
        else:
            raise ValueError("Unknown reduce_op type for reduce.")
        group = _get_default_group() if group is None else group
        gdst = group.get_group_rank(dst)
        assert gdst >= 0, ("dst rank out of group, need global rank")
        task = group.process_group.reduce(tensor, gdst, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
K
kuizhiqing 已提交
757 758 759

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
760
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
761

J
Jiabin Yang 已提交
762
    if _non_static_mode():
763
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
764 765 766
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
767
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
768 769 770
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
771
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
772 773 774
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
775
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
776 777 778
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
802 803 804
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
805 806 807
        })


K
kuizhiqing 已提交
808
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
809 810
    """

811 812 813 814 815 816 817 818 819
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
820 821 822 823 824 825

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
826
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
827 828
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
829 830 831 832 833 834 835

    Returns:
        None.

    Examples:
        .. code-block:: python

836
            # required: distributed
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
856
    """
K
kuizhiqing 已提交
857 858 859
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
860
    if in_dygraph_mode():
861
        group = _get_default_group() if group is None else group
862 863 864
        tensor_shape = list(tensor.shape)
        tensor_shape[0] *= group.nranks
        out = paddle.empty(tensor_shape, tensor.dtype)
865 866 867 868 869 870
        task = group.process_group.all_gather(tensor, out)
        task.wait()
        tensor_list.clear()
        tensor_list.extend(paddle.split(out, group.nranks, 0))
        return

K
kuizhiqing 已提交
871 872 873
    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

J
Jiabin Yang 已提交
874
    if _non_static_mode():
875 876
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
877
    else:
878 879 880
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
897 898 899
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
900 901
            })

K
kuizhiqing 已提交
902
    tensor_list.extend(paddle.split(out, nranks, 0))
903 904


K
kuizhiqing 已提交
905
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
906 907
    """

908 909 910 911 912 913 914
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
915 916 917 918

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
919
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
920 921
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
922
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
923 924
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
925 926 927 928 929 930 931

    Returns:
        None.

    Examples:
        .. code-block:: python

932
            # required: distributed
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
952
    """
K
kuizhiqing 已提交
953 954 955 956 957 958
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
959
    if in_dygraph_mode():
960 961 962 963 964 965 966 967 968
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        rank = group.rank
        nranks = group.nranks
    else:
        ring_id = 0 if group is None else group.id
        gsrc = src if group is None else group.get_group_rank(src)
        rank = _get_global_group().rank if group is None else group.rank
        nranks = _get_global_group().nranks if group is None else group.nranks
K
kuizhiqing 已提交
969
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
970 971

    if rank != gsrc:
972 973 974 975
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
L
lilong12 已提交
976
    if in_dygraph_mode():
977 978 979 980 981 982 983
        task = group.process_group.scatter(temp, tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
984
    if _non_static_mode():
W
wanghuancoder 已提交
985 986 987
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
988
    op_type = 'c_scatter'
989 990 991 992 993 994 995 996 997
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
998 999 1000
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
1001 1002 1003 1004
            'nranks': nranks,
        })


1005
def _c_identity(tensor, group=None):
L
lilong12 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1017 1018 1019 1020
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1021
    if _non_static_mode():
W
wanghuancoder 已提交
1022 1023
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
1024 1025 1026
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1027

L
lilong12 已提交
1028 1029 1030
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
1031

L
lilong12 已提交
1032 1033 1034 1035 1036
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1037
            'ring_id': ring_id,
L
lilong12 已提交
1038 1039 1040 1041 1042 1043
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


1044
def _c_concat(tensor, group=None):
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
1058 1059
    group = _get_default_group() if group is None else group
    ring_id = group.id
1060

1061
    global_rank = _get_global_env().rank
1062 1063
    rank = group.rank
    nranks = group.nranks
1064

J
Jiabin Yang 已提交
1065
    if _non_static_mode():
W
wanghuancoder 已提交
1066 1067 1068
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
1086 1087
            'nranks': nranks,
            'rank': rank
1088 1089 1090 1091
        })
    return out


1092
def _c_split(tensor, group=None):
L
lilong12 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1105 1106 1107 1108
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1109 1110 1111 1112
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

J
Jiabin Yang 已提交
1113
    if _non_static_mode():
W
wanghuancoder 已提交
1114 1115 1116
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
1117

L
lilong12 已提交
1118 1119 1120
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1121

L
lilong12 已提交
1122 1123 1124
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
1125

L
lilong12 已提交
1126 1127 1128 1129 1130
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1131
            'ring_id': ring_id,
L
lilong12 已提交
1132 1133 1134 1135 1136 1137 1138 1139
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1151
    if _non_static_mode():
1152
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
1153
            return _C_ops.c_allreduce_sum_(
1154 1155 1156 1157
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'use_model_parallel': use_model_parallel,
        })
    return out
1177 1178


1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
J
Jiabin Yang 已提交
1193
    if _non_static_mode():
W
wanghuancoder 已提交
1194
        return _C_ops.c_embedding(table, index, "start_index", start_index)
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='c_embedding',
        inputs={'Ids': index,
                'W': table},
        outputs={'Out': tmp},
        attrs={"start_index": start_index})
    return tmp

1209

B
Baibaifan 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

J
Jiabin Yang 已提交
1268
    if _non_static_mode():
W
wanghuancoder 已提交
1269
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1270 1271 1272 1273 1274 1275
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(
        type='c_softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss

1297

B
Baibaifan 已提交
1298 1299 1300 1301
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
J
Jiabin Yang 已提交
1302
    if _non_static_mode():
B
Baibaifan 已提交
1303
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1304 1305
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
B
Baibaifan 已提交
1306 1307 1308 1309 1310
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1311 1312
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1364
                     group=None):
1365 1366
    """
    Parallel Linear
1367 1368 1369

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1370
    axis = 1: the col dimension
1371
    
1372
    """
1373 1374 1375 1376
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1377 1378
    if axis == 0:
        if split_tensor:
1379
            x = _c_split(x, group=group)
1380
    else:
L
lilong12 已提交
1381 1382
        x = _c_identity(x, group=group)

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1401 1402 1403 1404
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1405
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1406 1407 1408 1409 1410

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1411
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1426
                'ring_id': ring_id,
L
lilong12 已提交
1427 1428 1429
                'use_calc_stream': True,
                'use_model_parallel': True
            })
1430 1431
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1432 1433 1434 1435 1436 1437
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1438
                'rank': inner_rank,
1439
                'ring_id': ring_id,
L
lilong12 已提交
1440 1441 1442 1443 1444
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1445 1446


L
lilong12 已提交
1447 1448 1449 1450 1451 1452 1453
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1454
                        group=None):
1455 1456 1457
    """
    Parallel Embedding
    """
1458 1459 1460 1461
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name)

1478 1479
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
    out = paddle.distributed.collective._mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True)
L
lilong12 已提交
1490
    return out
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1539 1540 1541 1542 1543
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1562 1563 1564 1565 1566
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1604

1605
            # required: distributed
1606
            import paddle
1607
            import paddle.distributed.fleet as fleet
1608

1609
            paddle.enable_static()
1610
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1611
            fleet.init(is_collective=True)
1612
            data = paddle.randint(0, 8, shape=[10,4])
1613
            emb_out = paddle.distributed.split(
1614 1615 1616 1617
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
J
Jiabin Yang 已提交
1635
    if _non_static_mode():
L
lilong12 已提交
1636 1637 1638 1639
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1640
    else:
1641
        from .fleet import fleet
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1653 1654 1655
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1656

1657
        per_part_size = size[0] // num_partitions
B
Baibaifan 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None)
        return emb_out
1668
    else:
L
lilong12 已提交
1669
        should_split = False
1670 1671 1672 1673 1674 1675 1676
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1677
            if x.shape[-1] == size[0]: should_split = True
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1699 1700 1701
            num_partitions,
            should_split,
            name=name,
1702
            group=None)
1703
        return linear_out
L
lilong12 已提交
1704 1705


L
lilong12 已提交
1706 1707
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1718 1719 1720 1721 1722 1723 1724
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
1725
    
L
lilong12 已提交
1726 1727
    Returns:
        None.
1728
    
L
lilong12 已提交
1729 1730
    Examples:
        .. code-block:: python
1731

L
lilong12 已提交
1732 1733 1734 1735
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1736
            
L
lilong12 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1747
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1748 1749 1750 1751 1752 1753
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
1754
    if in_dygraph_mode():
1755 1756 1757 1758
        group = _get_default_group() if group is None else group
    else:
        ring_id = 0 if group is None else group.id

L
lilong12 已提交
1759
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1760
    nranks = len(in_tensor_list)
L
lilong12 已提交
1761
    if in_dygraph_mode():
1762 1763 1764 1765 1766 1767 1768
        out = paddle.concat(out_tensor_list, axis=0)
        task = group.process_group.alltoall(temp, out)
        task.wait()
        out_tensor_list.clear()
        out_tensor_list.extend(paddle.split(out, nranks, 0))
        return

J
Jiabin Yang 已提交
1769
    if _non_static_mode():
李季 已提交
1770 1771
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
1772
    else:
W
wanghuancoder 已提交
1773 1774 1775 1776 1777
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
L
lilong12 已提交
1797
                'ring_id': ring_id,
L
lilong12 已提交
1798 1799 1800 1801 1802
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1803 1804 1805 1806 1807 1808 1809 1810
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1811 1812
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1813
    
L
lilong12 已提交
1814 1815 1816 1817 1818
    Returns:
        None.

    Examples:
        .. code-block:: python
1819

L
lilong12 已提交
1820
            # required: distributed
L
lilong12 已提交
1821
            import paddle
L
lilong12 已提交
1822
            from paddle.distributed import init_parallel_env
1823

L
lilong12 已提交
1824 1825 1826 1827 1828 1829 1830 1831
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1832 1833 1834
    """
    if group is not None and not group.is_member():
        return
1835

L
lilong12 已提交
1836
    if in_dygraph_mode():
1837 1838 1839 1840 1841 1842 1843 1844
        group = _get_default_group() if group is None else group
        task = group.process_group.send(tensor, dst)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1845 1846
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1847
    if _non_static_mode():
W
wanghuancoder 已提交
1848 1849
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
1850
    op_type = 'send_v2'
L
lilong12 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1874 1875
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1876
    
L
lilong12 已提交
1877 1878 1879 1880 1881
    Returns:
        None.

    Examples:
        .. code-block:: python
1882

L
lilong12 已提交
1883
            # required: distributed
L
lilong12 已提交
1884
            import paddle
L
lilong12 已提交
1885
            from paddle.distributed import init_parallel_env
1886

L
lilong12 已提交
1887 1888 1889 1890 1891 1892 1893 1894
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1895 1896 1897
    """
    if group is not None and not group.is_member():
        return
1898

L
lilong12 已提交
1899
    if in_dygraph_mode():
1900 1901 1902 1903 1904 1905 1906 1907
        group = _get_default_group() if group is None else group
        task = group.process_group.recv(tensor, src)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1908 1909
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1910
    if _non_static_mode():
W
wanghuancoder 已提交
1911 1912 1913
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
1914
    op_type = 'recv_v2'
L
lilong12 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })