collective.py 66.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
17
from datetime import timedelta
18
from ..fluid.layer_helper import LayerHelper
19
from ..fluid.framework import Variable
20
from ..fluid.framework import in_dygraph_mode
21
from ..fluid.framework import OpProtoHolder
J
Jiabin Yang 已提交
22
from ..fluid.framework import _non_static_mode
23
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
24
from ..fluid.framework import _varbase_creator
25 26 27 28
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
29 30
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
31
from ..fluid.dygraph import layers
32 33 34 35
from ..fluid.dygraph.parallel import prepare_context
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
36
from paddle import _C_ops
J
Jiangxinz 已提交
37
import paddle.fluid.dygraph_utils as dygraph_utils
38

39
__all__ = []
40 41 42


class ReduceOp:
L
lilong12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
74 75 76 77
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3
78
    AVG = 4
79 80


K
kuizhiqing 已提交
81 82 83 84
class Group():
    """
    The abstract representation of group.
    """
85

86
    def __init__(self, rank, rank_num, id=0, ranks=[], pg=None, name=None):
87 88
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
89 90
        self.id = id
        self.ranks = ranks
91 92
        self.pg = pg
        self.name = name
K
kuizhiqing 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

107 108 109 110
    @property
    def process_group(self):
        return self.pg

111 112 113 114
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
115 116
        debug_str += "; name: "
        debug_str += self.name if self.name else "None"
117 118
        return debug_str

K
kuizhiqing 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}

134 135 136 137 138 139 140
# group map by name : the map of all groups from their names
# Dict[name, Group]
_group_map_by_name = {}

# Name of the default group for init_parallel_env
_default_group_name = "_default_pg"

141
_valid_backend_list = ['nccl', 'gloo', 'hccl', 'heter']
142 143 144
_default_store = None  # the default tcp store
_default_backend = None

K
kuizhiqing 已提交
145

L
lilong12 已提交
146 147 148 149 150 151 152 153 154 155
def _set_default_backend(backend):
    global _default_backend
    _default_backend = backend


def _set_default_store(store):
    global _default_store
    _default_store = store


K
kuizhiqing 已提交
156 157 158 159
def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
160 161
        _group_map[0] = Group(
            genv.rank, genv.world_size, ranks=list(range(genv.world_size)))
K
kuizhiqing 已提交
162 163 164 165 166 167 168
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


169 170 171 172 173 174
def _get_group_map_by_name():
    global _group_map_by_name
    return _group_map_by_name


def _get_default_group():
L
lilong12 已提交
175
    global _group_map_by_name
176 177 178 179 180 181
    assert _default_group_name in _group_map_by_name, (
        "Call paddle.distributed.init_parallel_env first "
        "to initialize the distributed environment.")
    return _get_group_map_by_name()[_default_group_name]


L
lilong12 已提交
182 183 184 185 186 187 188 189 190 191 192 193
def _set_group_map(gid, group):
    global _group_map
    assert gid not in _group_map
    _group_map[gid] = group


def _set_group_map_by_name(name, group):
    global _group_map_by_name
    assert name not in _group_map_by_name
    _group_map_by_name[name] = group


K
kuizhiqing 已提交
194 195 196 197 198 199 200 201 202 203
def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
204
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
219
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
220 221


222 223 224 225 226 227 228
def _new_process_group_impl(backend,
                            store,
                            rank,
                            world_size,
                            group_name,
                            pg_options,
                            group_id=0):
229
    pg = None
L
lilong12 已提交
230
    assert backend in _valid_backend_list, "Unsupported backend: %s." % backend
231
    if backend == "gloo":
232
        pg = core.ProcessGroupGloo(store, rank, world_size, group_id)
233
    elif backend == "nccl":
234
        pg = core.ProcessGroupNCCL(store, rank, world_size, group_id)
235
    elif backend == "hccl":
236
        pg = core.ProcessGroupHCCL(store, rank, world_size, group_id)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    elif backend == "heter":
        cluster_id = int(os.getenv("CLUSTER_ID", "-1"))
        assert cluster_id >= 0, "please set the CLUSTER_ID variable."
        cluster_size = os.getenv("CLUSTER_SIZE", None)
        assert cluster_size, "please set the CLUSTER_SIZE variable."
        cluster_size = cluster_size.split(",")
        cluster_size = [int(s) for s in cluster_size]
        switch_ep = os.getenv("CLUSTER_SWITCH", None)
        assert switch_ep, "please set the CLUSTER_SWITCH variable."
        cluster_size_cumsum = np.cumsum(cluster_size)
        cluster_offset = 0 if cluster_id == 0 else cluster_size_cumsum[
            cluster_id - 1]
        global_rank = cluster_offset + rank
        global_world_size = cluster_size_cumsum[-1]
        pg = core.ProcessGroupHeter(
            store,
            rank=global_rank,
            world_size=global_world_size,
            gid=0,
            local_rank=rank,
            local_size=world_size,
            gloo_rank=cluster_id,
            gloo_size=len(cluster_size),
            with_switch=True,
            switch_endpoint=switch_ep)
262 263 264 265

    return pg


S
ShenLiang 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
290
    if in_dygraph_mode():
291 292 293 294 295
        group = _get_default_group() if group is None else group
        task = group.process_group.barrier()
        task.wait()
        return

S
ShenLiang 已提交
296 297 298
    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
J
Jiabin Yang 已提交
299
    if _non_static_mode():
W
wanghuancoder 已提交
300
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
301 302 303

    op_type = 'barrier'

S
ShenLiang 已提交
304 305 306 307 308 309 310 311 312 313
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
314 315 316
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
317
    Creates a new distributed communication group.
K
kuizhiqing 已提交
318 319

    Args:
K
kuizhiqing 已提交
320
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
321 322 323
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
324
        Group: The group instance.
K
kuizhiqing 已提交
325 326 327 328 329 330 331

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
332 333 334
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
335 336

    """
337
    global _group_map
L
lilong12 已提交
338
    if in_dygraph_mode():
339 340 341 342 343 344
        global _default_group_name
        gid = _new_ring_id()
        group_name = _default_group_name + str(gid)
        global_group = _get_default_group()
        global_rank = global_group.rank
        global_ranks = global_group.ranks
L
lilong12 已提交
345
        backend = _default_backend if backend is None else backend
346 347 348 349 350 351 352
        if ranks is None:
            ranks = global_ranks
        assert len(ranks) <= len(global_ranks), (
            "Size of new group must be less than or "
            "equal to that of the default global group.")
        size = len(ranks)
        ranks = sorted(ranks)
L
lilong12 已提交
353
        if global_rank in ranks and size > 1:
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
            rank = ranks.index(global_rank)
            pg = _new_process_group_impl(
                backend,
                _default_store,
                rank,
                size,
                group_name,
                pg_options=None,
                group_id=gid)
        else:
            rank = -1
            pg = None
        group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name)
        _group_map_by_name[group_name] = group
        _group_map[gid] = group

        return group
K
kuizhiqing 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
405 406 407 408
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
409 410 411 412
            elif core.is_compiled_with_mlu():
                place = core.MLUPlace(genv.device_id)
                core.CNCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
413 414 415 416 417 418 419
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
420
    tmp = paddle.to_tensor(
J
Jiabin Yang 已提交
421
        [1], dtype="int32") if _non_static_mode() else fill_constant(
422
            [0], dtype="int32", value="1")
423 424
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
425 426
    return gp

427

K
kuizhiqing 已提交
428 429 430 431 432 433 434 435
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
436 437
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
438 439 440 441 442 443 444 445 446 447

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
448
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

J
Jiabin Yang 已提交
467
    if _non_static_mode():
W
wanghuancoder 已提交
468
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
469 470 471 472 473 474 475 476

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
477

478

K
kuizhiqing 已提交
479
def _sync_comm_stream(tensor, ring_id=0):
480

J
Jiabin Yang 已提交
481
    if _non_static_mode():
W
wanghuancoder 已提交
482
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
483

K
kuizhiqing 已提交
484
    op_type = 'c_sync_comm_stream'
485

K
kuizhiqing 已提交
486 487 488 489 490 491 492 493 494
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
495 496 497
    """

    Broadcast a tensor from the source to all others.
498 499 500 501 502 503 504
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
505 506 507 508 509

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
510
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
511 512
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
513 514 515 516 517 518 519

    Returns:
        None.

    Examples:
        .. code-block:: python

520
            # required: distributed
521 522 523 524 525 526 527 528 529 530 531 532 533 534
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
535
    """
K
kuizhiqing 已提交
536 537 538 539 540 541 542

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
543
    if in_dygraph_mode():
544 545 546 547 548 549 550 551 552 553 554
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        assert gsrc >= 0, ("src rank out of group, need global rank")
        task = group.process_group.broadcast(tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

    ring_id = ring_id = 0 if group is None else group.id
K
kuizhiqing 已提交
555
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
556
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
557

J
Jiabin Yang 已提交
558
    if _non_static_mode():
W
wanghuancoder 已提交
559 560 561
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
562 563 564 565 566 567 568 569 570 571 572 573

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
574 575 576
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
577 578 579
        })


K
kuizhiqing 已提交
580
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
581 582 583
    """

    Reduce a tensor over all ranks so that all get the result.
584 585 586 587 588 589 590 591
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
592 593 594 595

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
596
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
597
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
598 599
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
600 601 602 603 604 605 606

    Returns:
        None.

    Examples:
        .. code-block:: python

607
            # required: distributed
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
623
    """
K
kuizhiqing 已提交
624 625 626
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
627
    if in_dygraph_mode():
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
        else:
            raise ValueError("Unknown reduce_op type for allreduce.")
        group = _get_default_group() if group is None else group
        task = group.process_group.allreduce(tensor, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

K
kuizhiqing 已提交
644
    ring_id = 0 if group is None else group.id
J
Jiabin Yang 已提交
645
    if _non_static_mode():
646
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
647 648
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
649
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
650 651
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
652
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
653 654
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
655
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
656 657
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
658 659 660 661 662 663 664 665 666 667 668 669 670 671
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
672 673
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
674 675 676 677 678
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
679 680
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
681 682


K
kuizhiqing 已提交
683
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
684 685
    """

686 687 688 689 690 691 692 693
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
694 695 696 697 698

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
699
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
700
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
701 702
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
703 704 705 706 707 708 709

    Returns:
        None.

    Examples:
        .. code-block:: python

710
            # required: distributed
711 712 713 714 715 716 717 718 719 720 721 722 723 724
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
725
    """
K
kuizhiqing 已提交
726 727 728
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
729
    if in_dygraph_mode():
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        if op == ReduceOp.SUM:
            op_type = core.ReduceOp.SUM
        elif op == ReduceOp.MAX:
            op_type = core.ReduceOp.MAX
        elif op == ReduceOp.MIN:
            op_type = core.ReduceOp.MIN
        else:
            raise ValueError("Unknown reduce_op type for reduce.")
        group = _get_default_group() if group is None else group
        gdst = group.get_group_rank(dst)
        assert gdst >= 0, ("dst rank out of group, need global rank")
        task = group.process_group.reduce(tensor, gdst, op_type)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task
K
kuizhiqing 已提交
747 748 749

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
750
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
751

J
Jiabin Yang 已提交
752
    if _non_static_mode():
753
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
754 755 756
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
757
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
758 759 760
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
761
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
762 763 764
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
765
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
766 767 768
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
792 793 794
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
795 796 797
        })


K
kuizhiqing 已提交
798
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
799 800
    """

801 802 803 804 805 806 807 808 809
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
810 811 812 813 814 815

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
816
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
817 818
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
819 820 821 822 823 824 825

    Returns:
        None.

    Examples:
        .. code-block:: python

826
            # required: distributed
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
846
    """
K
kuizhiqing 已提交
847 848 849
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
850
    if in_dygraph_mode():
851 852 853 854 855 856 857 858
        group = _get_default_group() if group is None else group
        out = paddle.concat(tensor_list)
        task = group.process_group.all_gather(tensor, out)
        task.wait()
        tensor_list.clear()
        tensor_list.extend(paddle.split(out, group.nranks, 0))
        return

K
kuizhiqing 已提交
859 860 861
    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

J
Jiabin Yang 已提交
862
    if _non_static_mode():
863 864
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
865
    else:
866 867 868
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
885 886 887
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
888 889
            })

K
kuizhiqing 已提交
890
    tensor_list.extend(paddle.split(out, nranks, 0))
891 892


K
kuizhiqing 已提交
893
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
894 895
    """

896 897 898 899 900 901 902
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
903 904 905 906

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
907
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
908 909
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
910
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
911 912
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
913 914 915 916 917 918 919

    Returns:
        None.

    Examples:
        .. code-block:: python

920
            # required: distributed
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
940
    """
K
kuizhiqing 已提交
941 942 943 944 945 946
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

L
lilong12 已提交
947
    if in_dygraph_mode():
948 949 950 951 952 953 954 955 956
        group = _get_default_group() if group is None else group
        gsrc = group.get_group_rank(src)
        rank = group.rank
        nranks = group.nranks
    else:
        ring_id = 0 if group is None else group.id
        gsrc = src if group is None else group.get_group_rank(src)
        rank = _get_global_group().rank if group is None else group.rank
        nranks = _get_global_group().nranks if group is None else group.nranks
K
kuizhiqing 已提交
957
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
958 959

    if rank != gsrc:
960 961 962 963
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
L
lilong12 已提交
964
    if in_dygraph_mode():
965 966 967 968 969 970 971
        task = group.process_group.scatter(temp, tensor, gsrc)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
972
    if _non_static_mode():
W
wanghuancoder 已提交
973 974 975
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
976
    op_type = 'c_scatter'
977 978 979 980 981 982 983 984 985
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
986 987 988
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
989 990 991 992
            'nranks': nranks,
        })


993
def _c_identity(tensor, group=None):
L
lilong12 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1005 1006 1007 1008
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1009
    if _non_static_mode():
W
wanghuancoder 已提交
1010 1011
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
1012 1013 1014
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1015

L
lilong12 已提交
1016 1017 1018
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
1019

L
lilong12 已提交
1020 1021 1022 1023 1024
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1025
            'ring_id': ring_id,
L
lilong12 已提交
1026 1027 1028 1029 1030 1031
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


1032
def _c_concat(tensor, group=None):
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
1046 1047
    group = _get_default_group() if group is None else group
    ring_id = group.id
1048

1049
    global_rank = _get_global_env().rank
1050 1051
    rank = group.rank
    nranks = group.nranks
1052

J
Jiabin Yang 已提交
1053
    if _non_static_mode():
W
wanghuancoder 已提交
1054 1055 1056
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
1074 1075
            'nranks': nranks,
            'rank': rank
1076 1077 1078 1079
        })
    return out


1080
def _c_split(tensor, group=None):
L
lilong12 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
1093 1094 1095 1096
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1097 1098 1099 1100
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

J
Jiabin Yang 已提交
1101
    if _non_static_mode():
W
wanghuancoder 已提交
1102 1103 1104
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
1105

L
lilong12 已提交
1106 1107 1108
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
1109

L
lilong12 已提交
1110 1111 1112
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
1113

L
lilong12 已提交
1114 1115 1116 1117 1118
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
1119
            'ring_id': ring_id,
L
lilong12 已提交
1120 1121 1122 1123 1124 1125 1126 1127
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1139
    if _non_static_mode():
1140
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
1141
            return _C_ops.c_allreduce_sum_(
1142 1143 1144 1145
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'use_model_parallel': use_model_parallel,
        })
    return out
1165 1166


1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
J
Jiabin Yang 已提交
1181
    if _non_static_mode():
W
wanghuancoder 已提交
1182
        return _C_ops.c_embedding(table, index, "start_index", start_index)
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='c_embedding',
        inputs={'Ids': index,
                'W': table},
        outputs={'Out': tmp},
        attrs={"start_index": start_index})
    return tmp

1197

B
Baibaifan 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

J
Jiabin Yang 已提交
1256
    if _non_static_mode():
W
wanghuancoder 已提交
1257
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1258 1259 1260 1261 1262 1263
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(
        type='c_softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss

1285

B
Baibaifan 已提交
1286 1287 1288 1289
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
J
Jiabin Yang 已提交
1290
    if _non_static_mode():
B
Baibaifan 已提交
1291
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1292 1293
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
B
Baibaifan 已提交
1294 1295 1296 1297 1298
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1299 1300
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1352
                     group=None):
1353 1354
    """
    Parallel Linear
1355 1356 1357

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1358
    axis = 1: the col dimension
1359
    
1360
    """
1361 1362 1363 1364
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1365 1366
    if axis == 0:
        if split_tensor:
1367
            x = _c_split(x, group=group)
1368
    else:
L
lilong12 已提交
1369 1370
        x = _c_identity(x, group=group)

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1389 1390 1391 1392
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1393
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1394 1395 1396 1397 1398

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1399
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1414
                'ring_id': ring_id,
L
lilong12 已提交
1415 1416 1417
                'use_calc_stream': True,
                'use_model_parallel': True
            })
1418 1419
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1420 1421 1422 1423 1424 1425
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1426
                'rank': inner_rank,
1427
                'ring_id': ring_id,
L
lilong12 已提交
1428 1429 1430 1431 1432
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1433 1434


L
lilong12 已提交
1435 1436 1437 1438 1439 1440 1441
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1442
                        group=None):
1443 1444 1445
    """
    Parallel Embedding
    """
1446 1447 1448 1449
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name)

1466 1467
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
    out = paddle.distributed.collective._mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True)
L
lilong12 已提交
1478
    return out
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1527 1528 1529 1530 1531
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1550 1551 1552 1553 1554
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1592

1593
            # required: distributed
1594
            import paddle
1595
            import paddle.distributed.fleet as fleet
1596

1597
            paddle.enable_static()
1598
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1599
            fleet.init(is_collective=True)
1600
            data = paddle.randint(0, 8, shape=[10,4])
1601
            emb_out = paddle.distributed.split(
1602 1603 1604 1605
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
J
Jiabin Yang 已提交
1623
    if _non_static_mode():
L
lilong12 已提交
1624 1625 1626 1627
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1628
    else:
1629
        from .fleet import fleet
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1641 1642 1643
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1644

1645
        per_part_size = size[0] // num_partitions
B
Baibaifan 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None)
        return emb_out
1656
    else:
L
lilong12 已提交
1657
        should_split = False
1658 1659 1660 1661 1662 1663 1664
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1665
            if x.shape[-1] == size[0]: should_split = True
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1687 1688 1689
            num_partitions,
            should_split,
            name=name,
1690
            group=None)
1691
        return linear_out
L
lilong12 已提交
1692 1693


L
lilong12 已提交
1694 1695
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1706 1707 1708 1709 1710 1711 1712
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
1713
    
L
lilong12 已提交
1714 1715
    Returns:
        None.
1716
    
L
lilong12 已提交
1717 1718
    Examples:
        .. code-block:: python
1719

L
lilong12 已提交
1720 1721 1722 1723
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1724
            
L
lilong12 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1735
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1736 1737 1738 1739 1740 1741
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

L
lilong12 已提交
1742
    if in_dygraph_mode():
1743 1744 1745 1746
        group = _get_default_group() if group is None else group
    else:
        ring_id = 0 if group is None else group.id

L
lilong12 已提交
1747
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1748
    nranks = len(in_tensor_list)
L
lilong12 已提交
1749
    if in_dygraph_mode():
1750 1751 1752 1753 1754 1755 1756
        out = paddle.concat(out_tensor_list, axis=0)
        task = group.process_group.alltoall(temp, out)
        task.wait()
        out_tensor_list.clear()
        out_tensor_list.extend(paddle.split(out, nranks, 0))
        return

J
Jiabin Yang 已提交
1757
    if _non_static_mode():
李季 已提交
1758 1759
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
1760
    else:
W
wanghuancoder 已提交
1761 1762 1763 1764 1765
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
L
lilong12 已提交
1785
                'ring_id': ring_id,
L
lilong12 已提交
1786 1787 1788 1789 1790
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1791 1792 1793 1794 1795 1796 1797 1798
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1799 1800
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1801
    
L
lilong12 已提交
1802 1803 1804 1805 1806
    Returns:
        None.

    Examples:
        .. code-block:: python
1807

L
lilong12 已提交
1808
            # required: distributed
L
lilong12 已提交
1809
            import paddle
L
lilong12 已提交
1810
            from paddle.distributed import init_parallel_env
1811

L
lilong12 已提交
1812 1813 1814 1815 1816 1817 1818 1819
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1820 1821 1822
    """
    if group is not None and not group.is_member():
        return
1823

L
lilong12 已提交
1824
    if in_dygraph_mode():
1825 1826 1827 1828 1829 1830 1831 1832
        group = _get_default_group() if group is None else group
        task = group.process_group.send(tensor, dst)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1833 1834
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1835
    if _non_static_mode():
W
wanghuancoder 已提交
1836 1837
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
1838
    op_type = 'send_v2'
L
lilong12 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1862 1863
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1864
    
L
lilong12 已提交
1865 1866 1867 1868 1869
    Returns:
        None.

    Examples:
        .. code-block:: python
1870

L
lilong12 已提交
1871
            # required: distributed
L
lilong12 已提交
1872
            import paddle
L
lilong12 已提交
1873
            from paddle.distributed import init_parallel_env
1874

L
lilong12 已提交
1875 1876 1877 1878 1879 1880 1881 1882
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1883 1884 1885
    """
    if group is not None and not group.is_member():
        return
1886

L
lilong12 已提交
1887
    if in_dygraph_mode():
1888 1889 1890 1891 1892 1893 1894 1895
        group = _get_default_group() if group is None else group
        task = group.process_group.recv(tensor, src)
        if use_calc_stream:
            task.wait()
            return None
        else:
            return task

L
lilong12 已提交
1896 1897
    ring_id = 0 if group is None else group.id

J
Jiabin Yang 已提交
1898
    if _non_static_mode():
W
wanghuancoder 已提交
1899 1900 1901
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
1902
    op_type = 'recv_v2'
L
lilong12 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })