collective.py 38.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
from ..fluid.dygraph.parallel import prepare_context
import paddle
24
from .fleet import fleet
25 26 27 28
import paddle.fluid as fluid
import paddle.fluid.core as core

__all__ = [
K
kuizhiqing 已提交
29 30 31
    'wait',
    'new_group',
    'get_group',
32 33 34 35 36 37
    'broadcast',
    'all_reduce',
    'reduce',
    'all_gather',
    'scatter',
    'barrier',
38
    'split',
39 40 41 42 43
    'ReduceOp',
]


class ReduceOp:
L
lilong12 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
75 76 77 78 79 80
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3


K
kuizhiqing 已提交
81 82 83 84
class Group():
    """
    The abstract representation of group.
    """
85

K
kuizhiqing 已提交
86
    def __init__(self, rank, rank_num, id=0, ranks=[]):
87 88
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        self.id = id
        self.ranks = ranks

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.id == 0:
            return rank
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1


_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}


def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
        _group_map[0] = Group(genv.rank, genv.world_size, 0)
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
145
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
    return gm[group] if group in gm else None


def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
166
    Creates a new distributed communication group.
K
kuizhiqing 已提交
167 168

    Args:
K
kuizhiqing 已提交
169
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
170 171 172
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
173
        Group: The group instance.
K
kuizhiqing 已提交
174 175 176 177 178 179 180

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
181 182 183
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    """

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    global _group_map
    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
        return gp

    ranks = sorted(ranks)
    group_rank = ranks.index(global_rank)
    group_size = len(ranks)
    gp = Group(group_rank, group_size, ring_id, ranks)
    _group_map[ring_id] = gp

    if group_size < 2:
        return gp

    strategy = core.ParallelStrategy()
    strategy.nranks = group_size
    strategy.local_rank = group_rank
    strategy.trainer_endpoints = [genv.trainer_endpoints[i] for i in ranks]
    strategy.current_endpoint = genv.current_endpoint
    strategy.nrings = 1

    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(genv.device_id)
        core.NCCLParallelContext(strategy, place).init_with_ring_id(ring_id)
    else:
K
kuizhiqing 已提交
222
        assert False, ("no cuda device found")
K
kuizhiqing 已提交
223 224 225

    return gp

226

K
kuizhiqing 已提交
227 228 229 230 231 232 233 234
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
235 236
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
237 238 239 240 241 242 243 244 245 246

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
247
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

    if in_dygraph_mode():
        return core.ops.c_sync_calc_stream(tensor, tensor)

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
276

277

K
kuizhiqing 已提交
278
def _sync_comm_stream(tensor, ring_id=0):
279

K
kuizhiqing 已提交
280 281 282
    if in_dygraph_mode():
        return core.ops.c_sync_comm_stream([tensor], [tensor], 'ring_id',
                                           ring_id)
283

K
kuizhiqing 已提交
284
    op_type = 'c_sync_comm_stream'
285

K
kuizhiqing 已提交
286 287 288 289 290 291 292 293 294
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
295 296 297 298 299 300 301 302
    """

    Broadcast a tensor from the source to all others.

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
303
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
304 305
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
306 307 308 309 310 311 312

    Returns:
        None.

    Examples:
        .. code-block:: python

313 314 315 316 317 318 319 320 321 322 323 324 325 326
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
327
    """
K
kuizhiqing 已提交
328 329 330 331 332 333 334 335 336

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
337
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
338

339
    if in_dygraph_mode():
K
kuizhiqing 已提交
340 341 342
        return core.ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                    'use_calc_stream', use_calc_stream,
                                    'ring_id', ring_id)
343 344 345 346 347 348 349 350 351 352 353 354

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
355 356 357
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
358 359 360
        })


K
kuizhiqing 已提交
361
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
362 363 364 365 366 367 368
    """

    Reduce a tensor over all ranks so that all get the result.

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
369
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
370
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
371 372
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
373 374 375 376 377 378 379

    Returns:
        None.

    Examples:
        .. code-block:: python

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
395
    """
K
kuizhiqing 已提交
396 397 398 399
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
400 401
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
402 403
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
404
        elif op == ReduceOp.MAX:
405 406
            return core.ops.c_allreduce_max_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
407
        elif op == ReduceOp.MIN:
408 409
            return core.ops.c_allreduce_min_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
410
        elif op == ReduceOp.PROD:
411 412
            return core.ops.c_allreduce_prod_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
413 414
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
415
        return out
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for all_reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
431 432
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
433 434 435 436 437
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
438 439
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
440 441


K
kuizhiqing 已提交
442
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
443 444 445 446 447 448 449 450
    """

    Reduce a tensor to the destination from all others.

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
451
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
452
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
453 454
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
455 456 457 458 459 460 461

    Returns:
        None.

    Examples:
        .. code-block:: python

462 463 464 465 466 467 468 469 470 471 472 473 474 475
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
476
    """
K
kuizhiqing 已提交
477 478 479 480 481 482 483 484
    if group is not None and not group.is_member():
        return

    if not isinstance(dst, int):
        raise ValueError("dst should be int.")

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
485
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
486

487 488 489
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
490 491
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
492 493
        elif op == ReduceOp.MAX:
            return core.ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
494 495
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
496 497
        elif op == ReduceOp.MIN:
            return core.ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
498 499
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
500 501
        elif op == ReduceOp.PROD:
            return core.ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
502 503
                                          use_calc_stream, 'ring_id', ring_id,
                                          'root_id', gdst)
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
530 531 532
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
533 534 535
        })


K
kuizhiqing 已提交
536
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
537 538 539 540 541 542 543 544 545
    """

    Gather tensors from all participators and all get the result.

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
546
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
547 548
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
549 550 551 552 553 554 555

    Returns:
        None.

    Examples:
        .. code-block:: python

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
575
    """
K
kuizhiqing 已提交
576 577 578 579 580 581
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

582 583 584
    op_type = 'c_allgather'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
K
kuizhiqing 已提交
585

586
    if in_dygraph_mode():
K
kuizhiqing 已提交
587 588
        core.ops.c_allgather(tensor, out, 'use_calc_stream', use_calc_stream,
                             'ring_id', ring_id, 'nranks', nranks)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    else:
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
606 607 608
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
609 610
            })

K
kuizhiqing 已提交
611
    tensor_list.extend(paddle.split(out, nranks, 0))
612 613


K
kuizhiqing 已提交
614
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
615 616 617 618 619 620 621 622
    """

    Scatter a tensor to all participators.

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        tensor_list (list): A list of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
623 624
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
625
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
626 627
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
628 629 630 631 632 633 634

    Returns:
        None.

    Examples:
        .. code-block:: python

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
654
    """
K
kuizhiqing 已提交
655 656 657 658 659 660 661 662
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
663
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
664 665 666
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks

667
    op_type = 'c_scatter'
K
kuizhiqing 已提交
668 669

    if rank != gsrc:
670 671 672 673 674
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
    if in_dygraph_mode():
K
kuizhiqing 已提交
675 676 677
        return core.ops.c_scatter(temp, tensor, 'use_calc_stream',
                                  use_calc_stream, 'ring_id', ring_id, 'nranks',
                                  nranks, 'root', gsrc)
678 679 680 681 682 683 684 685 686
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
687 688 689
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
690 691 692 693
            'nranks': nranks,
        })


694
def _c_identity(tensor, group=None):
L
lilong12 已提交
695 696 697 698 699 700 701 702 703 704 705
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
706 707 708 709 710 711 712
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                   ring_id, 'use_model_parallel', True)
L
lilong12 已提交
713 714 715
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
716

L
lilong12 已提交
717 718 719
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
720

L
lilong12 已提交
721 722 723 724 725
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
726
            'ring_id': ring_id,
L
lilong12 已提交
727 728 729 730 731 732
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def _c_concat(tensor, nranks, group=None):
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                                 True, 'nranks', nranks, 'use_model_parallel',
                                 True)

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
            'nranks': nranks
        })
    return out


def _c_split(tensor, rank, nranks, group=None):
L
lilong12 已提交
776 777 778 779 780 781 782 783 784 785 786 787
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
788 789 790 791 792 793 794 795 796
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                                ring_id, 'rank', rank, 'nranks', nranks,
                                'use_model_parallel', True)

L
lilong12 已提交
797 798 799
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
800

L
lilong12 已提交
801 802 803
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
804

L
lilong12 已提交
805 806 807 808 809
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
810
            'ring_id': ring_id,
L
lilong12 已提交
811 812 813 814 815 816 817 818
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
    else:
        raise NotImplementedError("No support _mp_allreduce in dygraph mode.")


K
kuizhiqing 已提交
841
def barrier(group=None):
842 843 844 845 846
    """

    Barrier among all participators in the group.

    Args:
K
kuizhiqing 已提交
847
        group (Group): The group instance return by new_group or None for global default group.
848 849 850 851 852 853 854

    Returns:
        None.

    Examples:
        .. code-block:: python

855 856
            import paddle
            from paddle.distributed import init_parallel_env
857

858 859 860
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
861
    """
K
kuizhiqing 已提交
862 863 864 865 866
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

867
    op_type = 'barrier'
868
    temp = fill_constant([1], dtype="int32", value="1")
869
    if in_dygraph_mode():
K
kuizhiqing 已提交
870 871
        return core.ops.barrier(temp, temp, 'ring_id', ring_id)
    if not isinstance(ring_id, int):
872 873 874 875 876 877
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
K
kuizhiqing 已提交
878
        attrs={'ring_id': ring_id})
879 880


L
lilong12 已提交
881 882 883 884 885 886 887 888 889 890 891
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
892
                     group=None):
893 894 895
    """
    Parallel Linear
    """
896 897 898 899
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
900 901 902
    if axis == 0:
        if split_tensor:
            x = _c_split(x, inner_rank, nranks, group=group)
903
    else:
L
lilong12 已提交
904 905
        x = _c_identity(x, group=group)

906 907 908 909 910 911 912 913 914 915
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    linear_out = linear(x)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
L
lilong12 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    startup_block.vars[linear.weight.name].is_distributed = True
    main_block.vars[linear.weight.name].is_distributed = True

    if not gather_out: return linear_out

    op_type = 'c_allreduce_sum' if axis == 0 else 'c_concat'
    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
938
                'ring_id': ring_id,
L
lilong12 已提交
939 940 941 942 943 944 945 946 947
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
948
                'ring_id': ring_id,
L
lilong12 已提交
949 950 951 952 953
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
954 955


L
lilong12 已提交
956 957 958 959 960 961 962
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
963
                        group=None):
964 965 966
    """
    Parallel Embedding
    """
967 968 969 970
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
    origin_num_embeddings = origin_size[0]
    embedding = paddle.nn.Embedding(
        per_part_embeddings,
        origin_size[1],
        padding_idx=per_part_embeddings - 1,
        sparse=False,
        weight_attr=param_attr,
        name=name)

    origin_input_shape = x.shape
    if len(origin_input_shape) == 2:
        x = paddle.unsqueeze(x, axis=-1)
    else:
        assert origin_input_shape[-1] == 1, (
            "The last dimension size of x must be 1.")
    x_shard = paddle.shard_index(x, origin_num_embeddings, num_partitions,
                                 inner_rank, per_part_embeddings - 1)
    if len(origin_input_shape) == 2:
        x_shard = paddle.squeeze(x_shard, axis=-1)
    emb_out = embedding(x_shard)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[embedding.weight.name].is_distributed = True
    main_block.vars[embedding.weight.name].is_distributed = True
L
lilong12 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    out = main_block.create_var(
        shape=emb_out.shape,
        dtype=emb_out.dtype,
        type=emb_out.type,
        lod_level=emb_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=emb_out.desc.need_check_feed())
    main_block.append_op(
        type='c_allreduce_sum',
        inputs={'X': emb_out},
        outputs={'Out': out},
        attrs={
1008
            'ring_id': ring_id,
L
lilong12 已提交
1009 1010 1011 1012
            'use_calc_stream': True,
            'use_model_parallel': True
        })
    return out
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            data = paddle.randint(0, 8, shape=[10,4])
            emb_out = padle.distributed.split(
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if in_dygraph_mode():
L
lilong12 已提交
1105 1106 1107 1108
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    else:
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
        per_part_size = (size[0] + num_partitions - 1) // num_partitions
        last_part_size = size[0] - per_part_size * (num_partitions - 1)
        if inner_rank == num_partitions - 1: per_part_size = last_part_size
        per_part_size += 1  # make the last row as the padding index

L
lilong12 已提交
1126 1127 1128 1129 1130 1131 1132 1133
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
1134
            group=None)
1135 1136
        return emb_out
    else:
L
lilong12 已提交
1137
        should_split = False
1138 1139 1140 1141 1142 1143 1144
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1145
            if x.shape[-1] == size[0]: should_split = True
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1167 1168 1169
            num_partitions,
            should_split,
            name=name,
1170
            group=None)
1171
        return linear_out