collective.py 58.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from ..fluid.layer_helper import LayerHelper
18 19 20 21
from ..fluid.framework import Variable
from ..fluid.framework import OpProtoHolder
from ..fluid.framework import in_dygraph_mode
from ..fluid.framework import convert_np_dtype_to_dtype_
J
Jiangxinz 已提交
22
from ..fluid.framework import _varbase_creator
23 24 25 26
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
27 28
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
B
Baibaifan 已提交
29
from ..fluid.dygraph import layers
30 31
from ..fluid.dygraph.parallel import prepare_context
import paddle
32
from .fleet import fleet
33 34
import paddle.fluid as fluid
import paddle.fluid.core as core
W
wanghuancoder 已提交
35
from paddle import _C_ops
J
Jiangxinz 已提交
36
import paddle.fluid.dygraph_utils as dygraph_utils
37

38
__all__ = []
39 40 41


class ReduceOp:
L
lilong12 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
73 74 75 76 77 78
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3


K
kuizhiqing 已提交
79 80 81 82
class Group():
    """
    The abstract representation of group.
    """
83

K
kuizhiqing 已提交
84
    def __init__(self, rank, rank_num, id=0, ranks=[]):
85 86
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        self.id = id
        self.ranks = ranks

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1

103 104 105 106 107 108 109
    def __repr__(self):
        debug_str = "rank: {}, nranks: {}, id: {}, ranks: ".format(
            self.rank, self.nranks, self.id)
        debug_str += ", ".join(map(str, self.ranks))
        debug_str += ". "
        return debug_str

K
kuizhiqing 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}


def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
W
WangXi 已提交
130 131
        _group_map[0] = Group(genv.rank, genv.world_size,
                              list(range(genv.world_size)))
K
kuizhiqing 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
149
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
J
Jiangxinz 已提交
164
    return gm[id] if id in gm else None
K
kuizhiqing 已提交
165 166


S
ShenLiang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    temp = fill_constant([1], dtype="int32", value="1")
    if in_dygraph_mode():
W
wanghuancoder 已提交
195
        return _C_ops.barrier(temp, temp, 'ring_id', ring_id)
W
wanghuancoder 已提交
196 197 198

    op_type = 'barrier'

S
ShenLiang 已提交
199 200 201 202 203 204 205 206 207 208
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
209 210 211
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
212
    Creates a new distributed communication group.
K
kuizhiqing 已提交
213 214

    Args:
K
kuizhiqing 已提交
215
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
216 217 218
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
219
        Group: The group instance.
K
kuizhiqing 已提交
220 221 222 223 224 225 226

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
227 228 229
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    """

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    global _group_map
    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
    else:
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        ranks = sorted(ranks)
        group_rank = ranks.index(global_rank)
        group_size = len(ranks)
        gp = Group(group_rank, group_size, ring_id, ranks)
        _group_map[ring_id] = gp

        if group_size >= 2:
            strategy = core.ParallelStrategy()
            strategy.nranks = group_size
            strategy.local_rank = group_rank
            strategy.trainer_endpoints = [
                genv.trainer_endpoints[i] for i in ranks
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
267 268 269 270
            elif core.is_compiled_with_npu():
                place = core.NPUPlace(genv.device_id)
                core.HCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
271 272 273 274 275 276 277
            else:
                assert False, ("no cuda device found")
        else:
            return gp

    # TODO(shenliang03): This is a temporary solution to solve the problem of 
    # hang caused by cross-creation of new_group
278 279 280
    tmp = paddle.to_tensor(
        [1], dtype="int32") if in_dygraph_mode() else fill_constant(
            [0], dtype="int32", value="1")
281 282
    paddle.distributed.all_reduce(tmp, use_calc_stream=True)
    paddle.distributed.wait(tmp)
K
kuizhiqing 已提交
283 284
    return gp

285

K
kuizhiqing 已提交
286 287 288 289 290 291 292 293
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
294 295
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
296 297 298 299 300 301 302 303 304 305

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
306
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

    if in_dygraph_mode():
W
wanghuancoder 已提交
326
        return _C_ops.c_sync_calc_stream(tensor, tensor)
K
kuizhiqing 已提交
327 328 329 330 331 332 333 334

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
335

336

K
kuizhiqing 已提交
337
def _sync_comm_stream(tensor, ring_id=0):
338

K
kuizhiqing 已提交
339
    if in_dygraph_mode():
W
wanghuancoder 已提交
340
        return _C_ops.c_sync_comm_stream([tensor], [tensor], 'ring_id', ring_id)
341

K
kuizhiqing 已提交
342
    op_type = 'c_sync_comm_stream'
343

K
kuizhiqing 已提交
344 345 346 347 348 349 350 351 352
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
353 354 355
    """

    Broadcast a tensor from the source to all others.
356 357 358 359 360 361 362
    As shown below, 4 GPUs each start 4 processes and GPU0 owns data 0. Through broadcast operator,
    the data 0 will be sent to all GPUs from GPU0.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/broadcast.png
        :width: 800
        :alt: broadcast
        :align: center
363 364 365 366 367

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
368
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
369 370
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
371 372 373 374 375 376 377

    Returns:
        None.

    Examples:
        .. code-block:: python

378
            # required: distributed
379 380 381 382 383 384 385 386 387 388 389 390 391 392
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
393
    """
K
kuizhiqing 已提交
394 395 396 397 398 399 400 401 402

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
403
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
404

405
    if in_dygraph_mode():
W
wanghuancoder 已提交
406 407 408
        return _C_ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                  'use_calc_stream', use_calc_stream, 'ring_id',
                                  ring_id)
409 410 411 412 413 414 415 416 417 418 419 420

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
421 422 423
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
424 425 426
        })


K
kuizhiqing 已提交
427
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
428 429 430
    """

    Reduce a tensor over all ranks so that all get the result.
431 432 433 434 435 436 437 438
    As shown below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. The reduce operator is sum. Through all_reduce operator, 
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center
439 440 441 442

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
443
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
444
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
445 446
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
447 448 449 450 451 452 453

    Returns:
        None.

    Examples:
        .. code-block:: python

454
            # required: distributed
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
470
    """
K
kuizhiqing 已提交
471 472 473 474
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
475 476
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
477 478
            return _C_ops.c_allreduce_sum_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
479
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
480 481
            return _C_ops.c_allreduce_max_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
482
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
483 484
            return _C_ops.c_allreduce_min_(tensor, 'use_calc_stream',
                                           use_calc_stream, 'ring_id', ring_id)
485
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
486 487
            return _C_ops.c_allreduce_prod_(tensor, 'use_calc_stream',
                                            use_calc_stream, 'ring_id', ring_id)
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for all_reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
505 506
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
507 508 509 510 511
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
512 513
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
514 515


K
kuizhiqing 已提交
516
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
517 518
    """

519 520 521 522 523 524 525 526
    Reduce a tensor to the destination from all others. As shown below, 4 GPUs each start 4 processes and the data on each GPU is respresnted
    by the GPU number. The destination of the reduce operator is GPU0 and the process is sum. Through reduce operator,
    the GPU0 will owns the sum of all data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/reduce.png
        :width: 800
        :alt: reduce
        :align: center
527 528 529 530 531

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
532
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
533
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
534 535
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
536 537 538 539 540 541 542

    Returns:
        None.

    Examples:
        .. code-block:: python

543
            # required: distributed
544 545 546 547 548 549 550 551 552 553 554 555 556 557
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
558
    """
K
kuizhiqing 已提交
559 560 561 562 563 564 565 566
    if group is not None and not group.is_member():
        return

    if not isinstance(dst, int):
        raise ValueError("dst should be int.")

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
567
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
568

569 570
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
571 572 573
            return _C_ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
574
        elif op == ReduceOp.MAX:
W
wanghuancoder 已提交
575 576 577
            return _C_ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
578
        elif op == ReduceOp.MIN:
W
wanghuancoder 已提交
579 580 581
            return _C_ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
                                       use_calc_stream, 'ring_id', ring_id,
                                       'root_id', gdst)
582
        elif op == ReduceOp.PROD:
W
wanghuancoder 已提交
583 584 585
            return _C_ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
                                        use_calc_stream, 'ring_id', ring_id,
                                        'root_id', gdst)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
612 613 614
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
615 616 617
        })


K
kuizhiqing 已提交
618
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
619 620
    """

621 622 623 624 625 626 627 628 629
    Gather tensors from all participators and all get the result. As shown
    below, 4 GPUs each start 4 processes and the data on each GPU is represnted
    by the GPU number. Through the all_gather operator, each GPU will have data
    from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png
        :width: 800
        :alt: all_gather
        :align: center
630 631 632 633 634 635

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
636
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
637 638
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
639 640 641 642 643 644 645

    Returns:
        None.

    Examples:
        .. code-block:: python

646
            # required: distributed
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
666
    """
K
kuizhiqing 已提交
667 668 669 670 671 672
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

673
    if in_dygraph_mode():
674 675
        out = _C_ops.c_allgather(tensor, 'use_calc_stream', use_calc_stream,
                                 'ring_id', ring_id, 'nranks', nranks)
676
    else:
677 678 679
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
696 697 698
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
699 700
            })

K
kuizhiqing 已提交
701
    tensor_list.extend(paddle.split(out, nranks, 0))
702 703


K
kuizhiqing 已提交
704
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
705 706
    """

707 708 709 710 711 712 713
    Scatter a tensor to all participators. As shown below, 4 GPUs each start 4 processes and the source of the scatter
    is GPU0. Through scatter operator, the data in GPU0 will be sent to all GPUs averagely.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/scatter.png
        :width: 800
        :alt: scatter
        :align: center
714 715 716 717

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
718
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
719 720
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
721
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
722 723
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
724 725 726 727 728 729 730

    Returns:
        None.

    Examples:
        .. code-block:: python

731
            # required: distributed
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
751
    """
K
kuizhiqing 已提交
752 753 754 755 756 757 758 759
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
760
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
761 762 763 764
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks

    if rank != gsrc:
765 766 767 768 769
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
    if in_dygraph_mode():
W
wanghuancoder 已提交
770 771 772
        return _C_ops.c_scatter(temp, tensor, 'use_calc_stream',
                                use_calc_stream, 'ring_id', ring_id, 'nranks',
                                nranks, 'root', gsrc)
W
wanghuancoder 已提交
773
    op_type = 'c_scatter'
774 775 776 777 778 779 780 781 782
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
783 784 785
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
786 787 788 789
            'nranks': nranks,
        })


790
def _c_identity(tensor, group=None):
L
lilong12 已提交
791 792 793 794 795 796 797 798 799 800 801
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
802 803 804 805 806
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
W
wanghuancoder 已提交
807 808
        return _C_ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                 ring_id, 'use_model_parallel', True)
L
lilong12 已提交
809 810 811
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
812

L
lilong12 已提交
813 814 815
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
816

L
lilong12 已提交
817 818 819 820 821
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
822
            'ring_id': ring_id,
L
lilong12 已提交
823 824 825 826 827 828
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


829
def _c_concat(tensor, group=None):
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

845 846 847 848
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

849
    if in_dygraph_mode():
W
wanghuancoder 已提交
850 851 852
        return _C_ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                               True, 'rank', rank, 'nranks', nranks,
                               'use_model_parallel', True)
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
870 871
            'nranks': nranks,
            'rank': rank
872 873 874 875
        })
    return out


876
def _c_split(tensor, group=None):
L
lilong12 已提交
877 878 879 880 881 882 883 884 885 886 887 888
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
889 890 891 892
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

893 894 895 896
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

897
    if in_dygraph_mode():
W
wanghuancoder 已提交
898 899 900
        return _C_ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                              ring_id, 'rank', rank, 'nranks', nranks,
                              'use_model_parallel', True)
901

L
lilong12 已提交
902 903 904
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
905

L
lilong12 已提交
906 907 908
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
909

L
lilong12 已提交
910 911 912 913 914
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
915
            'ring_id': ring_id,
L
lilong12 已提交
916 917 918 919 920 921 922 923
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


924 925 926 927 928 929 930 931 932 933 934 935 936
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        if op == ReduceOp.SUM:
W
wanghuancoder 已提交
937
            return _C_ops.c_allreduce_sum_(
938 939 940 941
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

    op_type = 'c_allreduce_sum'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        op_type)

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'use_model_parallel': use_model_parallel,
        })
    return out
961 962


963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
def _c_lookup_table(table, index, start_index=0, name=None):
    """
    Lookup table according to index.

    Args:
        table (Tensor): The input Tensor. Its data type
            should be float16, float32, float64.
        index (Tensor): The index to lookup table.
        start_index (int): The initial index for table range.
        name (string): The name of the api

    Returns:
        Tensor.
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
978
        return _C_ops.c_embedding(table, index, "start_index", start_index)
979

980 981 982 983 984 985 986 987 988 989 990 991 992
    op_type = 'c_embedding'
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name='table')
    check_variable_and_dtype(index, 'input', ['int32', 'int64'], op_type)
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='c_embedding',
        inputs={'Ids': index,
                'W': table},
        outputs={'Out': tmp},
        attrs={"start_index": start_index})
    return tmp

993

B
Baibaifan 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
class _Linear(layers.Layer):
    """
    Linear
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(_Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = _linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)


1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
def _c_softmax_with_cross_entropy(logits,
                                  label,
                                  group=None,
                                  return_softmax=False):
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id
    global_rank = _get_global_env().rank
    rank = global_rank if group is None else group.get_group_rank(global_rank)
    nranks = _get_global_env().world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

    if in_dygraph_mode():
W
wanghuancoder 已提交
1053
        softmax, loss = _C_ops.c_softmax_with_cross_entropy(
1054 1055 1056 1057 1058 1059
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

W
WangXi 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    attrs = {
        'ring_id': ring_id,
        'rank': rank,
        'nranks': nranks,
    }
    helper = LayerHelper('c_softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    helper.append_op(
        type='c_softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs=attrs)

    if return_softmax:
        return loss, softmax

    return loss

1081

B
Baibaifan 已提交
1082 1083 1084 1085 1086 1087
def _linear(x, weight, bias=None, name=None):
    """
    Fuction Linear
    """
    if in_dygraph_mode():
        pre_bias = _varbase_creator(dtype=x.dtype)
W
wanghuancoder 已提交
1088 1089
        _C_ops.matmul(x, weight, pre_bias, 'transpose_X', False, 'transpose_Y',
                      False, "alpha", 1)
B
Baibaifan 已提交
1090 1091 1092 1093 1094
        return dygraph_utils._append_bias_in_dygraph(
            pre_bias, bias, axis=len(x.shape) - 1)
    else:
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
B
Baibaifan 已提交
1095 1096
        assert len(
            x.shape) < 4, "X latitude is not supported greater than 3 now."
B
Baibaifan 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')

        inputs = {'X': [x], 'Y': [weight]}
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2', inputs=inputs, outputs={'Out': tmp}, attrs=attrs)
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [bias]},
                outputs={'Out': [res]},
                attrs={'axis': len(x.shape) - 1})
        else:
            res = tmp
        return res


1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


L
lilong12 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
1148
                     group=None):
1149 1150
    """
    Parallel Linear
1151 1152 1153

    axis the dimension of the parameter of linear layer. 
    axis = 0: the row dimension
1154
    axis = 1: the col dimension
1155
    
1156
    """
1157 1158 1159 1160
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
1161 1162
    if axis == 0:
        if split_tensor:
1163
            x = _c_split(x, group=group)
1164
    else:
L
lilong12 已提交
1165 1166
        x = _c_identity(x, group=group)

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    # NOTE: npu linear function use matmul_v2 but linear use matmul
    linear_function = _linear if core.is_compiled_with_npu()\
        else paddle.nn.functional.linear
    linear_out = linear_function(
        x,
        linear.weight,
        # NOTE(wangxi): row split, bias need add after allreduce
        None if axis == 0 else linear.bias,
        linear.name)

    _set_var_distributed(linear.weight)
1185 1186 1187 1188
    # set is_distributed for splited bias
    # if a linear layer is splited by row, each rank would hold a complete bias and they should be the same in each rank.
    # if a linear layer is splited by col, the bias would also be split into each rank as its weight
    if axis == 1 and linear._bias_attr != False:
1189
        _set_var_distributed(linear.bias)
L
lilong12 已提交
1190 1191 1192 1193 1194

    if not gather_out: return linear_out

    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
1195
    main_block = paddle.static.default_main_program().current_block()
L
lilong12 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1210
                'ring_id': ring_id,
L
lilong12 已提交
1211 1212 1213
                'use_calc_stream': True,
                'use_model_parallel': True
            })
1214 1215
        if linear.bias is not None:
            out = out + linear.bias
L
lilong12 已提交
1216 1217 1218 1219 1220 1221
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
1222
                'ring_id': ring_id,
L
lilong12 已提交
1223 1224 1225 1226 1227
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
1228 1229


L
lilong12 已提交
1230 1231 1232 1233 1234 1235 1236
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
1237
                        group=None):
1238 1239 1240
    """
    Parallel Embedding
    """
1241 1242 1243 1244
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    helper = LayerHelper("_parallel_embedding", **locals())

    per_part_size = per_part_embeddings
    rank = inner_rank

    vocab_start_index = rank * per_part_size
    dtype = helper.get_default_dtype()
    size = [per_part_size, origin_size[1]]

    weight = helper.create_parameter(
        attr=param_attr, shape=size, dtype=dtype, is_bias=False)

    if num_partitions == 1:
        return paddle.nn.functional.embedding(
            x, weight=weight, padding_idx=None, sparse=False, name=name)

1261 1262
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    startup_block.vars[weight.name].is_distributed = True
    main_block.vars[weight.name].is_distributed = True

    output_parallel = paddle.distributed.collective._c_lookup_table(
        weight, x, start_index=vocab_start_index, name=name)
    out = paddle.distributed.collective._mp_allreduce(
        output_parallel,
        group=group,
        use_calc_stream=True,
        use_model_parallel=True)
L
lilong12 已提交
1273
    return out
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        The Embedding put on single card is as shown below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_single.png
            :width: 800
            :height: 350
            :alt: single_embedding
            :align: center

        Parallel Embedding is shown as below:

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_embedding_split.png
            :width: 800
            :alt: split_embedding
            :align: center

1322 1323 1324 1325 1326
    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        The linear layer put on single card is shown as below, the input variable is represented by X,
        the weight matrix is represented by W and the output vaiable is O. The linear layer on single card is 
        simple matrix multiplication operation, O = X * W.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_single.png
            :width: 800
            :alt: single_linear
            :align: center

        Row Parallel Linear is shown as below. As the name suggests, Row Parallel Linear splits the weight matrix W into
        [[W_row1], [W_row2]] along the row. And accordingly the input is splitted along the column into [X_col1, X_col2] and multiply their
        respective weight matrices. Finally apply AllReduce on the output from each card to get the final output.

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_row.png
            :width: 800
            :alt: split_row
            :align: center

1345 1346 1347 1348 1349
    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        The linear layer put on single card has been illustrated on case 2 and Column Parallel Linear
        is shown as below. The Column Parallel Linear splits the weight matrix W into [W_col1, W_col2] along the column and 
        these splitted matrices respectively multiply the input. Finally apply AllGather on the output from each card to get the final output. 

        .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col.png
            :width: 800
            :alt: split_col
            :align: center
    
    As observed, the column parallel linear and row parallel linear can be combined to skip one ALLGATHER communication
    operator. Furthermore the Attention and MLP can be combined to imporve the performance as shown below.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/split_col_row.png
            :width: 800
            :alt: split_col_row
            :align: center

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python
1387

1388
            # required: distributed
1389
            import paddle
1390
            import paddle.distributed.fleet as fleet
1391

1392
            paddle.enable_static()
1393
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
1394
            fleet.init(is_collective=True)
1395
            data = paddle.randint(0, 8, shape=[10,4])
1396
            emb_out = paddle.distributed.split(
1397 1398 1399 1400
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if in_dygraph_mode():
L
lilong12 已提交
1419 1420 1421 1422
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
    else:
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
1435 1436 1437
        assert size[0] % num_partitions == 0, \
            "The length of the vocabulary must be divisible by num_partitions " \
            "but received vocabulary={} num_partitions={}".format(size[0], num_partitions)
1438

1439
        per_part_size = size[0] // num_partitions
B
Baibaifan 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
            group=None)
        return emb_out
1450
    else:
L
lilong12 已提交
1451
        should_split = False
1452 1453 1454 1455 1456 1457 1458
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1459
            if x.shape[-1] == size[0]: should_split = True
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1481 1482 1483
            num_partitions,
            should_split,
            name=name,
1484
            group=None)
1485
        return linear_out
L
lilong12 已提交
1486 1487


L
lilong12 已提交
1488 1489
def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
    """
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    Scatter tensors in in_tensor_list to all participators averagely and gather the result tensors in out_tensor_list.
    As shown below, the in_tensor_list in GPU0 includes 0_0 and 0_1, and GPU1 includes 1_0 and 1_1.
    Through alltoall operator, the 0_0 in GPU0 will be sent to GPU0 and 0_1 to GPU1, 1_0 in GPU1 sent to GPU0 and 1_1 to GPU1.
    Finally the out_tensor_list in GPU0 includes 0_0 and 1_0, and GPU1 includes 0_1 and 1_1.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/alltoall.png
        :width: 800
        :alt: alltoall
        :align: center

L
lilong12 已提交
1500 1501 1502 1503 1504 1505 1506
    Args:
        in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the
            data type of the input Tensors.
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
1507
    
L
lilong12 已提交
1508 1509
    Returns:
        None.
1510
    
L
lilong12 已提交
1511 1512
    Examples:
        .. code-block:: python
1513

L
lilong12 已提交
1514 1515 1516 1517
            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
1518
            
L
lilong12 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
            init_parallel_env()
            out_tensor_list = []
            if paddle.distributed.ParallelEnv().rank == 0:
                np_data1 = np.array([[1, 2, 3], [4, 5, 6]])
                np_data2 = np.array([[7, 8, 9], [10, 11, 12]])
            else:
                np_data1 = np.array([[13, 14, 15], [16, 17, 18]])
                np_data2 = np.array([[19, 20, 21], [22, 23, 24]])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
李季 已提交
1529
            paddle.distributed.alltoall([data1, data2], out_tensor_list)
L
lilong12 已提交
1530 1531 1532 1533 1534 1535 1536 1537
            # out for rank 0: [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]
            # out for rank 1: [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]]
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    temp = paddle.concat(in_tensor_list, axis=0)
李季 已提交
1538
    nranks = len(in_tensor_list)
L
lilong12 已提交
1539
    if in_dygraph_mode():
李季 已提交
1540 1541
        out = _C_ops.alltoall(temp, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id)
L
lilong12 已提交
1542
    else:
W
wanghuancoder 已提交
1543 1544 1545 1546 1547
        op_type = 'alltoall'
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(
            dtype=in_tensor_list[0].dtype)

L
lilong12 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
        if not isinstance(in_tensor_list, list):
            raise ValueError("The type of 'in_tensor_list' for all_to_all "
                             "should be list.")
        for elem in in_tensor_list:
            check_variable_and_dtype(
                elem, 'in_tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_to_all')
        if not isinstance(out_tensor_list, list):
            raise ValueError("The type of 'out_tensor_list' for all_to_all "
                             "should be list.")
        if len(out_tensor_list) != 0:
            raise ValueError("The 'out_tensor_list' for all_to_all "
                             "must be an empty list.")
        helper.append_op(
            type=op_type,
            inputs={'X': [temp]},
            outputs={'Out': [out]},
            attrs={
L
lilong12 已提交
1567
                'ring_id': ring_id,
L
lilong12 已提交
1568 1569 1570 1571 1572
                'use_calc_stream': use_calc_stream,
            })
    out_tensor_list.extend(paddle.split(out, nranks, 0))


L
lilong12 已提交
1573 1574 1575 1576 1577 1578 1579 1580
def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1581 1582
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1583
    
L
lilong12 已提交
1584 1585 1586 1587 1588
    Returns:
        None.

    Examples:
        .. code-block:: python
1589

L
lilong12 已提交
1590
            # required: distributed
L
lilong12 已提交
1591
            import paddle
L
lilong12 已提交
1592
            from paddle.distributed import init_parallel_env
1593

L
lilong12 已提交
1594 1595 1596 1597 1598 1599 1600 1601
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1602 1603 1604 1605 1606 1607
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
W
wanghuancoder 已提交
1608 1609
        return _C_ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', dst)
W
wanghuancoder 已提交
1610
    op_type = 'send_v2'
L
lilong12 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1634 1635
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
1636
    
L
lilong12 已提交
1637 1638 1639 1640 1641
    Returns:
        None.

    Examples:
        .. code-block:: python
1642

L
lilong12 已提交
1643
            # required: distributed
L
lilong12 已提交
1644
            import paddle
L
lilong12 已提交
1645
            from paddle.distributed import init_parallel_env
1646

L
lilong12 已提交
1647 1648 1649 1650 1651 1652 1653 1654
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1655 1656 1657 1658 1659 1660
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
W
wanghuancoder 已提交
1661 1662 1663
        return _C_ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                              'ring_id', ring_id, 'peer', src, 'dtype',
                              tensor.dtype, 'out_shape', tensor.shape)
W
wanghuancoder 已提交
1664
    op_type = 'recv_v2'
L
lilong12 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })