softmax_op.cc 9.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

D
dengkaipeng 已提交
17
#include <memory>
18
#include <string>
D
dengkaipeng 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28

29 30 31
namespace paddle {
namespace operators {

D
dongzhihong 已提交
32
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
33 34 35
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

36
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
37 38
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
39 40
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
41

42 43 44
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
45 46 47 48 49 50 51
    PADDLE_ENFORCE(axis >= -rank_x && axis < rank_x,
                   "Attr(axis) value should be in range [-R, R-1], "
                   "R is the rank of Input(X).");

    auto use_cudnn = ctx->Attrs().Get<bool>("use_cudnn");
    auto use_mkldnn = ctx->Attrs().Get<bool>("use_mkldnn");
    if (axis != rank_x - 1 && axis != -1) {
D
dengkaipeng 已提交
52 53
      PADDLE_ENFORCE(!use_cudnn, "CUDNN kernel only support axis as -1.");
      PADDLE_ENFORCE(!use_mkldnn, "MKLDNN kernel only support axis as -1.");
54
    }
55

F
fengjiayi 已提交
56
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
57
    ctx->ShareLoD("X", /*->*/ "Out");
58
  }
59 60 61 62 63

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
64
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
65 66 67
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

68
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
69
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
70
      library_ = framework::LibraryType::kCUDNN;
71 72
    }
#endif
73 74 75 76
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
77
      layout_ = framework::DataLayout::kMKLDNN;
78 79
    }
#endif
K
Kexin Zhao 已提交
80

Y
Yu Yang 已提交
81
    auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
82
    if (input_data_type == framework::proto::VarType::FP16) {
83 84
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
K
Kexin Zhao 已提交
85 86
    }

M
mozga-intel 已提交
87
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
88
                                   library_);
89
  }
90
};
91

D
dongzhihong 已提交
92
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
93
 public:
Y
Yu Yang 已提交
94
  void Make() override {
95
    AddInput("X",
F
fengjiayi 已提交
96
             "The input tensor of softmax, "
D
dengkaipeng 已提交
97
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
98
    AddOutput("Out", "The normalized values with the same shape as X.");
99
    AddAttr<int>("axis",
D
dengkaipeng 已提交
100
                 "The dimension index of Input(x) to perform softmax,"
101 102
                 "default -1 for last dimension")
        .SetDefault(-1);
103 104 105 106 107 108 109 110 111 112 113
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
114 115 116
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
117
    AddAttr<bool>("is_test",
118 119
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
120
        .SetDefault(false);
C
caoying03 已提交
121
    AddComment(R"DOC(
122 123
Softmax Operator.

124
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
125
has the same shape as the input.
C
caoying03 已提交
126

D
dengkaipeng 已提交
127
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
128
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
129
second dimension(row length) is as same as the dimension :attr:`axis` of the input
130 131 132
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
133
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
134
K-dimensional vector of real values in the range [0, 1] that add up to 1.
135 136 137 138 139
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
140

F
fengjiayi 已提交
141
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
142
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
143 144

)DOC");
145 146 147
  }
};

C
chengduo 已提交
148 149 150 151 152 153 154 155
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
156
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
157 158 159
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

160
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
161 162 163 164 165 166
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
167

168 169
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
170
  }
171 172 173 174 175

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
176
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
177 178
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
179

180
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
181
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
182
      library_ = framework::LibraryType::kCUDNN;
183 184
    }
#endif
J
Jacek Czaja 已提交
185 186 187 188 189 190 191
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
Y
Yu Yang 已提交
192 193
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
J
Jacek Czaja 已提交
194 195 196 197 198 199 200
    if (input_data_type == framework::proto::VarType::FP16) {
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
201
  }
D
dongzhihong 已提交
202 203
};

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
class SoftmaxOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("softmax_grad");

    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};
D
dzhwinter 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

class SoftmaxInplaceInToOut : public framework::InplaceInToOut {
 public:
  using framework::InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc& op_desc,
      framework::BlockDesc* block) const override {
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"},
    };
  }
};

237 238 239
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
240
namespace ops = paddle::operators;
D
dongzhihong 已提交
241

Y
Yang Yang 已提交
242
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
C
chengduo 已提交
243
                  ops::SoftmaxOpInferVarType, ops::SoftmaxOpGradMaker);
244
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
245
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
246 247
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
248 249
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
250 251
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);