softmax_op.cc 8.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16 17 18

#include <string>

K
Kexin Zhao 已提交
19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29
namespace paddle {
namespace operators {

D
dongzhihong 已提交
30
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31 32 33
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
37 38
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
39

40 41 42 43 44 45 46
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
    PADDLE_ENFORCE(axis >= -1 && axis < rank_x,
                   "Attr(axis) value should larger equal then -1"
                   "and less then the rank of Input(X)");

F
fengjiayi 已提交
47
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
48
    ctx->ShareLoD("X", /*->*/ "Out");
49
  }
50 51 52 53 54

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
55
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
56 57 58
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

59
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
60
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
61
      library_ = framework::LibraryType::kCUDNN;
62 63
    }
#endif
64 65 66 67
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
68
      layout_ = framework::DataLayout::kMKLDNN;
69 70
    }
#endif
K
Kexin Zhao 已提交
71

Y
Yu Yang 已提交
72
    auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
73
    if (input_data_type == framework::proto::VarType::FP16) {
74 75
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
K
Kexin Zhao 已提交
76 77
    }

M
mozga-intel 已提交
78
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
79
                                   library_);
80
  }
81
};
82

D
dongzhihong 已提交
83
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
84
 public:
Y
Yu Yang 已提交
85
  void Make() override {
86
    AddInput("X",
F
fengjiayi 已提交
87 88
             "The input tensor of softmax, "
             "whose last dimension is the input_feature_dimensions.");
89
    AddOutput("Out", "The normalized values with the same shape as X.");
90 91 92 93
    AddAttr<int>("axis",
                 "The dimension of Input(x) to perform softmax,"
                 "default -1 for last dimension")
        .SetDefault(-1);
94 95 96 97 98 99 100 101 102 103 104
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
105 106 107
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
108
    AddAttr<bool>("is_test",
109 110
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
111
        .SetDefault(false);
C
caoying03 已提交
112
    AddComment(R"DOC(
113 114
Softmax Operator.

115
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
116
has the same shape as the input.
C
caoying03 已提交
117

118 119 120 121 122 123
The input tensor will first be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the last dimension of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
124
K-dimensional vector of real values in the range [0, 1] that add up to 1.
125 126 127 128 129
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
130

F
fengjiayi 已提交
131
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
132
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
133 134

)DOC");
135 136 137
  }
};

C
chengduo 已提交
138 139 140 141 142 143 144 145
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
146
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
147 148 149
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

150
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
151 152 153 154 155 156
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
157

158 159
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
160
  }
161 162 163 164 165

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
166
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
167 168
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
169

170
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
171
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
172
      library_ = framework::LibraryType::kCUDNN;
173 174
    }
#endif
J
Jacek Czaja 已提交
175 176 177 178 179 180 181
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
Y
Yu Yang 已提交
182 183
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
J
Jacek Czaja 已提交
184 185 186 187 188 189 190
    if (input_data_type == framework::proto::VarType::FP16) {
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
191
  }
D
dongzhihong 已提交
192 193
};

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class SoftmaxOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("softmax_grad");

    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};
D
dzhwinter 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

class SoftmaxInplaceInToOut : public framework::InplaceInToOut {
 public:
  using framework::InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc& op_desc,
      framework::BlockDesc* block) const override {
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"},
    };
  }
};

227 228 229
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
230
namespace ops = paddle::operators;
D
dongzhihong 已提交
231

Y
Yang Yang 已提交
232
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
C
chengduo 已提交
233
                  ops::SoftmaxOpInferVarType, ops::SoftmaxOpGradMaker);
234
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
235
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
236 237
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
238 239
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
240 241
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);