提交 9620df44 编写于 作者: Y Yi Wang

Reformat paddle/operators/* strictly following Google Style Guide

上级 559b0224
---
Language: Cpp
BasedOnStyle: Google
Standard: Cpp11
...
......@@ -18,7 +18,7 @@ namespace paddle {
namespace operators {
class AddOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2, "Input size of AddOp must be two");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Output size of AddOp must be one");
......@@ -33,7 +33,7 @@ protected:
};
class AddOpMaker : public OpProtoAndCheckerMaker {
public:
public:
AddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of add op");
......@@ -48,7 +48,7 @@ The equation is: Out = X + Y
};
class AddOpGrad : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {}
};
......
......@@ -20,7 +20,7 @@ namespace operators {
template <typename Place, typename T>
class AddKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
auto input0 = context.Input<Tensor>(0);
auto input1 = context.Input<Tensor>(1);
......
......@@ -18,7 +18,7 @@ namespace paddle {
namespace operators {
class OnehotCrossEntropyOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2,
"Input size of OnehotCrossEntropyOp must be two");
......@@ -37,7 +37,7 @@ protected:
};
class OnehotCrossEntropyOpMaker : public OpProtoAndCheckerMaker {
public:
public:
OnehotCrossEntropyOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of OnehotCrossEntropyOp");
......@@ -54,8 +54,7 @@ OnehotCrossEntropy Operator.
} // namespace operators
} // namespace paddle
REGISTER_OP(onehot_cross_entropy,
ops::OnehotCrossEntropyOp,
REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp,
ops::OnehotCrossEntropyOpMaker);
REGISTER_OP_CPU_KERNEL(onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<ops::CPUPlace, float>);
......@@ -20,7 +20,7 @@ namespace operators {
template <typename Place, typename T>
class OnehotCrossEntropyOpKernel : public OpKernel {
public:
public:
constexpr T LOG_THRESHOLD() const { return static_cast<T>(1e-20); }
void Compute(const ExecutionContext& ctx) const override {
......
......@@ -18,31 +18,29 @@ namespace paddle {
namespace operators {
class FullyConnectedOp : public NetOp {
public:
public:
void Init() override {
AddOp(OpRegistry::CreateOp("mul",
{
Input("X"), Input("W"),
},
{Output("before_act")},
{}));
{Output("before_act")}, {}));
auto b = Input("b");
if (b != framework::kEmptyVarName) {
AddOp(OpRegistry::CreateOp("rowwise_add",
{Output("before_act"), Input("b")},
{Output("before_act")},
{}));
{Output("before_act")}, {}));
}
auto activation = GetAttr<std::string>("activation");
AddOp(OpRegistry::CreateOp(
activation, {Output("before_act")}, {Output("Y")}, {}));
AddOp(OpRegistry::CreateOp(activation, {Output("before_act")},
{Output("Y")}, {}));
CompleteAddOp(false);
}
};
class FullyConnectedOpMaker : public OpProtoAndCheckerMaker {
public:
public:
FullyConnectedOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input of fc operator");
......
......@@ -20,7 +20,7 @@ namespace paddle {
namespace operators {
class FillZerosLikeOp : public framework::OperatorWithKernel {
protected:
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1UL,
"Input size of FillZerosLikeOp must be one.");
......@@ -36,7 +36,7 @@ protected:
};
class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
FillZerosLikeOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
......@@ -52,8 +52,7 @@ The output will have the same size with input.
} // namespace operators
} // namespace paddle
REGISTER_OP(fill_zeros_like,
paddle::operators::FillZerosLikeOp,
REGISTER_OP(fill_zeros_like, paddle::operators::FillZerosLikeOp,
paddle::operators::FillZerosLikeOpMaker);
REGISTER_OP_CPU_KERNEL(
fill_zeros_like,
......
......@@ -22,7 +22,7 @@ namespace operators {
template <typename Place, typename T>
class FillZerosLikeKernel : public framework::OpKernel {
public:
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* output = context.Output<framework::Tensor>(0);
output->mutable_data<T>(context.GetPlace());
......
......@@ -18,7 +18,7 @@ namespace paddle {
namespace operators {
class MeanOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Input size of AddOp must be one");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Output size of AddOp must be one");
......@@ -29,7 +29,7 @@ protected:
};
class MeanOpMaker : public OpProtoAndCheckerMaker {
public:
public:
MeanOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of mean op");
......@@ -39,7 +39,7 @@ public:
};
class MeanGradOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
ctx.Output<Tensor>("X" + framework::kGradVarSuffix)
->Resize(ctx.Input<Tensor>("X")->dims());
......
......@@ -20,7 +20,7 @@ namespace operators {
template <typename Place, typename T>
class MeanKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0);
auto output = context.Output<Tensor>(0);
......@@ -37,7 +37,7 @@ public:
template <typename Place, typename T>
class MeanGradKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
auto OG = context.Input<Tensor>("Out" + framework::kGradVarSuffix);
PADDLE_ENFORCE(framework::product(OG->dims()) == 1,
......
......@@ -18,7 +18,7 @@ namespace paddle {
namespace operators {
class MulOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2, "The mul op must take two inputs");
auto dim0 = ctx.Input<Tensor>(0)->dims();
......@@ -34,7 +34,7 @@ protected:
};
class MulOpMaker : public OpProtoAndCheckerMaker {
public:
public:
MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of mul op");
......@@ -49,7 +49,7 @@ The equation is: Out = X * Y
};
class MulOpGrad : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {}
std::string DebugString() const override {
LOG(INFO) << "MulGrad";
......
......@@ -21,7 +21,7 @@ namespace operators {
template <typename Place, typename T>
class MulKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair = {
{Eigen::IndexPair<Eigen::DenseIndex>(1, 0)}};
......
......@@ -40,7 +40,7 @@ namespace operators {
* it defines.
*/
class NetOp : public framework::OperatorBase {
public:
public:
/**
* Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch
......@@ -90,7 +90,7 @@ public:
std::vector<std::shared_ptr<OperatorBase>> ops_;
private:
private:
bool add_op_done_{false};
template <typename T, typename KeyType>
......
......@@ -12,7 +12,7 @@ static int infer_shape_cnt = 0;
static int run_cnt = 0;
class TestOp : public OperatorBase {
public:
public:
void InferShape(const framework::Scope& scope) const override {
++infer_shape_cnt;
}
......@@ -23,7 +23,7 @@ public:
};
class EmptyOp : public OperatorBase {
public:
public:
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
......
......@@ -28,14 +28,12 @@ namespace operators {
namespace rnn {
void SegmentInputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& inlinks,
const size_t seq_len,
const std::vector<Link>& inlinks, const size_t seq_len,
bool infer_shape_mode) {
PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided.");
for (size_t i = 0; i < inlinks.size(); ++i) {
auto input_var = step_scopes[0]->FindVar(inlinks[i].external);
PADDLE_ENFORCE(input_var != nullptr,
"input link [%s] is not in scope.",
PADDLE_ENFORCE(input_var != nullptr, "input link [%s] is not in scope.",
inlinks[i].external);
Tensor* input = input_var->GetMutable<Tensor>();
framework::DDim dims = input->dims();
......@@ -54,13 +52,11 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
}
void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& outlinks,
const size_t seq_len,
const std::vector<Link>& outlinks, const size_t seq_len,
bool infer_shape_mode) {
for (size_t i = 0; i < outlinks.size(); i++) {
auto output_var = step_scopes[0]->FindVar(outlinks[i].external);
PADDLE_ENFORCE(output_var != nullptr,
"output link [%s] is not in scope.",
PADDLE_ENFORCE(output_var != nullptr, "output link [%s] is not in scope.",
outlinks[i].external);
Tensor* output = output_var->GetMutable<Tensor>();
if (infer_shape_mode) {
......@@ -87,22 +83,16 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
void LinkMemories(const std::vector<Scope*>& scopes,
const std::vector<rnn::MemoryAttr>& memories,
const size_t step_id,
const int offset,
const size_t step_id, const int offset,
bool infer_shape_mode) {
PADDLE_ENFORCE(step_id < scopes.size(),
"step [%d] is out of range of step scopes' size [%d]",
step_id,
"step [%d] is out of range of step scopes' size [%d]", step_id,
scopes.size());
PADDLE_ENFORCE(static_cast<int>(step_id) + offset >= 0,
"offset [%d] must be large than -[%d]",
offset,
step_id);
"offset [%d] must be large than -[%d]", offset, step_id);
PADDLE_ENFORCE(step_id + offset < scopes.size(),
"offset [%d] is out of range, it must be less than (%d - %d)",
offset,
scopes.size(),
step_id);
offset, scopes.size(), step_id);
auto scope = scopes[step_id];
auto linked_scope = scopes[step_id + offset];
for (auto& attr : memories) {
......@@ -116,8 +106,7 @@ void LinkMemories(const std::vector<Scope*>& scopes,
}
}
void InitArgument(const ArgumentName& name,
Argument* arg,
void InitArgument(const ArgumentName& name, Argument* arg,
const OperatorBase& op) {
arg->step_net = op.Input(name.step_net);
arg->step_scopes = op.Output(name.step_scopes);
......@@ -126,8 +115,7 @@ void InitArgument(const ArgumentName& name,
auto inlink_alias = op.GetAttr<std::vector<std::string>>(name.inlink_alias);
PADDLE_ENFORCE(inlinks.size() == inlink_alias.size(),
"the size of inlinks and inlink_alias don't match:%d,%d",
inlinks.size(),
inlink_alias.size());
inlinks.size(), inlink_alias.size());
for (size_t i = 0; i < inlinks.size(); ++i) {
rnn::Link link;
link.external = inlinks[i];
......@@ -139,8 +127,7 @@ void InitArgument(const ArgumentName& name,
auto outlink_alias = op.GetAttr<std::vector<std::string>>(name.outlink_alias);
PADDLE_ENFORCE(outlinks.size() == outlink_alias.size(),
"the size of outlinks and outlink_alias don't match:%d,%d",
outlinks.size(),
outlink_alias.size());
outlinks.size(), outlink_alias.size());
for (size_t i = 0; i < outlinks.size(); ++i) {
rnn::Link link;
link.external = outlinks[i];
......@@ -156,12 +143,10 @@ void InitArgument(const ArgumentName& name,
PADDLE_ENFORCE(memories.size() == boot_memories.size(),
"the size of memories, boot_memories don't match:%d,%d",
memories.size(),
boot_memories.size());
memories.size(), boot_memories.size());
PADDLE_ENFORCE(pre_memories.size() == boot_memories.size(),
"the size of pre_memories, boot_memories don't match:%d,%d",
pre_memories.size(),
boot_memories.size());
pre_memories.size(), boot_memories.size());
PADDLE_ENFORCE(memories.size() > 0, "more than 1 memories should be set");
for (size_t i = 0; i < memories.size(); ++i) {
......@@ -181,39 +166,39 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const {
->dims()[0];
CreateScopes(scope);
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, true /*infer_shape_mode*/);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
true /*infer_shape_mode*/);
InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (size_t i = 0; i < seq_len_; i++) {
if (i > 0) {
rnn::LinkMemories(
step_scopes, arg_->memories, i, -1, true /*infer_shape_mode*/);
rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
true /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->InferShape(*step_scopes[i]);
}
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, true /*infer_shape_mode*/);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
true /*infer_shape_mode*/);
}
void RecurrentAlgorithm::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, false /*infer_shape_mode*/);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
false /*infer_shape_mode*/);
InitMemories(step_scopes[0], false /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
for (size_t step_id = 0; step_id < seq_len_; step_id++) {
if (step_id > 0) {
rnn::LinkMemories(
step_scopes, arg_->memories, step_id, -1, false /*infer_shape_mode*/);
rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
false /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
}
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, false /*infer_shape_mode*/);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
false /*infer_shape_mode*/);
}
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
......@@ -245,8 +230,7 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope,
for (auto& attr : arg_->memories) {
Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"memory [%s]'s boot variable [%s] not exists",
attr.var,
"memory [%s]'s boot variable [%s] not exists", attr.var,
attr.boot_var);
Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>();
if (infer_shape_mode) {
......@@ -257,25 +241,15 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope,
}
}
const rnn::ArgumentName RecurrentOp::kArgName{"step_net",
"step_scopes",
"inlinks",
"outlinks",
"inlink_alias",
"outlink_alias",
"memories",
"pre_memories",
"boot_memories"};
const rnn::ArgumentName RecurrentGradientOp::kArgName{"step_net",
"step_scopes",
"outlink@grad",
"inlink@grad",
"inlink_alias",
"outlink_alias",
"memories",
"pre_memories",
"boot_memories@grad"};
const rnn::ArgumentName RecurrentOp::kArgName{
"step_net", "step_scopes", "inlinks",
"outlinks", "inlink_alias", "outlink_alias",
"memories", "pre_memories", "boot_memories"};
const rnn::ArgumentName RecurrentGradientOp::kArgName{
"step_net", "step_scopes", "outlink@grad",
"inlink@grad", "inlink_alias", "outlink_alias",
"memories", "pre_memories", "boot_memories@grad"};
void RecurrentOp::Init() {
OperatorBase::Init();
......@@ -285,7 +259,7 @@ void RecurrentOp::Init() {
}
class RecurrentAlgorithmProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
public:
RecurrentAlgorithmProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
......@@ -316,31 +290,29 @@ public:
void RecurrentGradientAlgorithm::Run(
const Scope& scope, const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, false /*infer_shape_mode*/);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
false /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(
step_scopes, arg_->memories, step_id, 1, false /*infer_shape_mode*/);
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
false /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
}
LinkBootMemoryGradients(step_scopes[0], false);
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, false /*infer_shape_mode*/);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
false /*infer_shape_mode*/);
}
void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
Scope* step_scope, bool infer_shape_mode) const {
for (auto& attr : arg_->memories) {
PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
"memory variable [%s] does not exists",
attr.var);
"memory variable [%s] does not exists", attr.var);
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"boot variable [%s] does not exists",
attr.boot_var);
"boot variable [%s] does not exists", attr.boot_var);
Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
Tensor* boot_mem_grad =
step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>();
......@@ -357,19 +329,19 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
->GetMutable<Tensor>()
->dims()[0];
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, true /*infer_shape_mode*/);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
true /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(
step_scopes, arg_->memories, step_id, 1, true /*infer_shape_mode*/);
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
true /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->InferShape(*step_scopes[step_id]);
}
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, true /*infer_shape_mode*/);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
true /*infer_shape_mode*/);
LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
}
......@@ -383,6 +355,5 @@ void RecurrentGradientOp::Init() {
} // namespace operators
} // namespace paddle
REGISTER_OP(recurrent_op,
paddle::operators::RecurrentOp,
REGISTER_OP(recurrent_op, paddle::operators::RecurrentOp,
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);
......@@ -69,23 +69,19 @@ struct ArgumentName {
* Prepare inputs for each step net.
*/
void SegmentInputs(const std::vector<framework::Scope*>& step_scopes,
const std::vector<Link>& inlinks,
const size_t seq_len,
const std::vector<Link>& inlinks, const size_t seq_len,
bool infer_shape_mode);
/**
* Process outputs of step nets and merge to variables.
*/
void ConcatOutputs(const std::vector<framework::Scope*>& step_scopes,
const std::vector<Link>& outlinks,
const size_t seq_len,
const std::vector<Link>& outlinks, const size_t seq_len,
bool infer_shape_mode);
void LinkMemories(const std::vector<framework::Scope*>& step_scopes,
const std::vector<MemoryAttr>& memories,
const size_t step_id,
const int offset,
bool infer_shape_mode);
const std::vector<MemoryAttr>& memories, const size_t step_id,
const int offset, bool infer_shape_mode);
void InitArgument(const ArgumentName& name, Argument* arg);
......@@ -100,7 +96,7 @@ void InitArgument(const ArgumentName& name, Argument* arg);
// Refer to: https://arxiv.org/pdf/1502.02367.pdf
class RecurrentAlgorithm {
public:
public:
void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const;
......@@ -111,7 +107,7 @@ public:
*/
void InferShape(const framework::Scope& scope) const;
protected:
protected:
/*
* The step scopes will be stored in the father scope as a variable.
*
......@@ -128,7 +124,7 @@ protected:
void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const;
private:
private:
std::unique_ptr<rnn::Argument> arg_;
mutable size_t seq_len_;
};
......@@ -144,7 +140,7 @@ class RecurrentGradientAlgorithm {
* lot, and the latter is a wrapper acts like an dapter for it to make RNN an
* operator.
*/
public:
public:
void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }
void Run(const framework::Scope& scope,
......@@ -158,20 +154,20 @@ public:
*/
void InferShape(const framework::Scope& scope) const;
protected:
protected:
inline const std::vector<framework::Scope*>& GetStepScopes(
const framework::Scope& scope) const {
return *scope.FindVar(arg_->step_scopes)
->GetMutable<std::vector<framework::Scope*>>();
}
private:
private:
std::unique_ptr<rnn::Argument> arg_;
mutable size_t seq_len_;
};
class RecurrentOp final : public framework::OperatorBase {
public:
public:
void Init() override;
/**
......@@ -188,12 +184,12 @@ public:
static const rnn::ArgumentName kArgName;
private:
private:
RecurrentAlgorithm alg_;
};
class RecurrentGradientOp final : public framework::OperatorBase {
public:
public:
void Init() override;
/**
......@@ -210,7 +206,7 @@ public:
static const rnn::ArgumentName kArgName;
private:
private:
RecurrentGradientAlgorithm alg_;
};
......
......@@ -29,7 +29,7 @@ using framework::make_ddim;
using framework::DDim;
class RecurrentOpTest : public ::testing::Test {
protected:
protected:
virtual void SetUp() override {
CreateGlobalVariables();
CreateStepNet();
......@@ -174,7 +174,7 @@ TEST_F(RecurrentOpTest, Run) {
}
class RecurrentGradientAlgorithmTest : public ::testing::Test {
protected:
protected:
virtual void SetUp() override {
CreateGlobalVariables();
CreateStepScopes();
......@@ -277,13 +277,11 @@ protected:
LOG(INFO) << "create variable step_net";
Variable* var = scope_.NewVar("step_net");
auto net = var->GetMutable<NetOp>();
net->AddOp(OpRegistry::CreateOp("mul",
{"rnn/h_pre", "rnn/w", "rnn/s_grad"},
{"rnn/h_pre_grad", "rnn/w_grad"},
{}));
net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w", "rnn/s_grad"},
{"rnn/h_pre_grad", "rnn/w_grad"}, {}));
net->AddOp(OpRegistry::CreateOp(
"add_two", {"rnn/h_grad"}, {"rnn/x_grad", "rnn/s_grad"}, {}));
net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"},
{"rnn/x_grad", "rnn/s_grad"}, {}));
net->CompleteAddOp();
}
......@@ -297,9 +295,7 @@ protected:
inlink.internal = "rnn/x";
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
rnn::SegmentInputs(*step_scopes,
std::vector<rnn::Link>{inlink},
10,
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10,
true /*infer_shape_mode*/);
}
......@@ -314,8 +310,8 @@ protected:
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
for (int i = 1; i < 10; ++i) {
rnn::LinkMemories(
*step_scopes, memories, i, -1, true /*infer_shape_mode*/);
rnn::LinkMemories(*step_scopes, memories, i, -1,
true /*infer_shape_mode*/);
}
}
......
......@@ -17,7 +17,7 @@ namespace paddle {
namespace operators {
class RowWiseAddOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2UL,
"Two inputs is needed by rowwise add");
......@@ -33,7 +33,7 @@ protected:
};
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The left input of row-wise add op, must be matrix");
......
......@@ -20,7 +20,7 @@ namespace operators {
template <typename Place, typename T>
class RowWiseAddKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
auto out = context.Output<Tensor>(0);
out->mutable_data<T>(context.GetPlace());
......
......@@ -18,7 +18,7 @@ namespace paddle {
namespace operators {
class SGDOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2, "Input size of SGDOp must be two");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Output size of SGDOp must be one");
......@@ -32,7 +32,7 @@ protected:
};
class SGDOpMaker : public OpProtoAndCheckerMaker {
public:
public:
SGDOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("param", "input parameter");
......
......@@ -20,7 +20,7 @@ namespace operators {
template <typename Place, typename T>
class SGDOpKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& ctx) const override {
auto param = ctx.Input<Tensor>("param");
auto grad = ctx.Input<Tensor>("grad");
......
......@@ -17,7 +17,7 @@ namespace paddle {
namespace operators {
class SigmoidOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Sigmoid Op only have one input");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Sigmoid Op only have one output");
......@@ -26,7 +26,7 @@ protected:
};
class SigmoidOpMaker : public OpProtoAndCheckerMaker {
public:
public:
SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "sigmoid input");
......@@ -36,7 +36,7 @@ public:
};
class SigmoidOpGrad : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {}
std::string DebugString() const override {
LOG(INFO) << "SigmoidGrad";
......
......@@ -21,7 +21,7 @@ namespace operators {
template <typename Place, typename T>
class SigmoidKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0);
auto output = context.Output<Tensor>(0);
......
......@@ -18,7 +18,7 @@ namespace paddle {
namespace operators {
class SoftmaxOp : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1UL,
"Only one input is need for softmax");
......@@ -31,7 +31,7 @@ protected:
};
class SoftmaxOpMaker : public OpProtoAndCheckerMaker {
public:
public:
SoftmaxOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "input of softmax");
......@@ -41,7 +41,7 @@ public:
};
class SoftmaxOpGrad : public OperatorWithKernel {
protected:
protected:
void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 3UL,
"Input of SoftmaxOpGrad should be 3, X, Y, YG");
......
......@@ -24,7 +24,7 @@ namespace operators {
template <typename Place, typename T>
class SoftmaxKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>("X");
auto output = context.Output<Tensor>("Y");
......@@ -63,7 +63,7 @@ public:
template <typename Place, typename T>
class SoftmaxGradKernel : public OpKernel {
public:
public:
void Compute(const ExecutionContext& context) const override {
std::shared_ptr<Tensor> scale_ = std::make_shared<Tensor>();
......
......@@ -26,21 +26,16 @@ using OperatorBase = framework::OperatorBase;
using InferShapeContext = framework::InferShapeContext;
using ExecutionContext = framework::ExecutionContext;
using Variable = framework::Variable;
template <typename T,
int MajorType = Eigen::RowMajor,
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
template <typename T,
int MajorType = Eigen::RowMajor,
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T,
int MajorType = Eigen::RowMajor,
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T,
size_t D,
int MajorType = Eigen::RowMajor,
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册