softmax_op.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

D
dengkaipeng 已提交
17
#include <memory>
18
#include <string>
D
dengkaipeng 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28

29 30 31
namespace paddle {
namespace operators {

D
dongzhihong 已提交
32
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
33 34 35
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

36
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
37 38
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
39 40
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
41

42 43 44 45 46 47 48
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
    PADDLE_ENFORCE(axis >= -1 && axis < rank_x,
                   "Attr(axis) value should larger equal then -1"
                   "and less then the rank of Input(X)");

F
fengjiayi 已提交
49
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
50
    ctx->ShareLoD("X", /*->*/ "Out");
51
  }
52 53 54 55 56

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
57
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
58 59 60
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

61
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
62
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
63
      library_ = framework::LibraryType::kCUDNN;
64 65
    }
#endif
66 67 68 69
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
70
      layout_ = framework::DataLayout::kMKLDNN;
71 72
    }
#endif
K
Kexin Zhao 已提交
73

Y
Yu Yang 已提交
74
    auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
75
    if (input_data_type == framework::proto::VarType::FP16) {
76 77
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
K
Kexin Zhao 已提交
78 79
    }

M
mozga-intel 已提交
80
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
81
                                   library_);
82
  }
83
};
84

D
dongzhihong 已提交
85
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
86
 public:
Y
Yu Yang 已提交
87
  void Make() override {
88
    AddInput("X",
F
fengjiayi 已提交
89
             "The input tensor of softmax, "
D
dengkaipeng 已提交
90
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
91
    AddOutput("Out", "The normalized values with the same shape as X.");
92
    AddAttr<int>("axis",
D
dengkaipeng 已提交
93
                 "The dimension index of Input(x) to perform softmax,"
94 95
                 "default -1 for last dimension")
        .SetDefault(-1);
96 97 98 99 100 101 102 103 104 105 106
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
107 108 109
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
110
    AddAttr<bool>("is_test",
111 112
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
113
        .SetDefault(false);
C
caoying03 已提交
114
    AddComment(R"DOC(
115 116
Softmax Operator.

117
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
118
has the same shape as the input.
C
caoying03 已提交
119

D
dengkaipeng 已提交
120
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
121
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
122
second dimension(row length) is as same as the dimension :attr:`axis` of the input
123 124 125
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
126
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
127
K-dimensional vector of real values in the range [0, 1] that add up to 1.
128 129 130 131 132
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
133

F
fengjiayi 已提交
134
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
135
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
136 137

)DOC");
138 139 140
  }
};

C
chengduo 已提交
141 142 143 144 145 146 147 148
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
149
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
150 151 152
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

153
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
154 155 156 157 158 159
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
160

161 162
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
163
  }
164 165 166 167 168

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
169
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
170 171
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
172

173
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
174
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
175
      library_ = framework::LibraryType::kCUDNN;
176 177
    }
#endif
J
Jacek Czaja 已提交
178 179 180 181 182 183 184
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
Y
Yu Yang 已提交
185 186
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
J
Jacek Czaja 已提交
187 188 189 190 191 192 193
    if (input_data_type == framework::proto::VarType::FP16) {
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
194
  }
D
dongzhihong 已提交
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
class SoftmaxOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("softmax_grad");

    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};
D
dzhwinter 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

class SoftmaxInplaceInToOut : public framework::InplaceInToOut {
 public:
  using framework::InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc& op_desc,
      framework::BlockDesc* block) const override {
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"},
    };
  }
};

230 231 232
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
233
namespace ops = paddle::operators;
D
dongzhihong 已提交
234

Y
Yang Yang 已提交
235
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
C
chengduo 已提交
236
                  ops::SoftmaxOpInferVarType, ops::SoftmaxOpGradMaker);
237
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
238
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
239 240
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
241 242
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
243 244
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);