softmax_op.cc 3.6 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/operators/softmax_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
27 28
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
29 30 31

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(x_dims.size() == 2UL,
C
caoying03 已提交
32
                   "The input of softmax op must be a matrix.");
F
fengjiayi 已提交
33
    ctx->SetOutputDim("Out", x_dims);
Q
Qiao Longfei 已提交
34
    ctx->ShareLoD("X", /*->*/ "Out");
35 36 37
  }
};

D
dongzhihong 已提交
38
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
39
 public:
40
  SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
41
      : OpProtoAndCheckerMaker(proto, op_checker) {
42
    AddInput("X",
C
caoying03 已提交
43 44
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
F
fengjiayi 已提交
45
    AddOutput("Out", "The normalized values with the same shape as X.");
C
caoying03 已提交
46
    AddComment(R"DOC(
47 48 49
Softmax Operator.

The input of the softmax operator is a 2-D tensor with shape N x K (N is the
C
caoying03 已提交
50 51 52 53 54
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
55 56 57 58 59 60
values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
61

62
For each row $i$ and each column $j$ in Input(X), we have:
F
fengjiayi 已提交
63
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
64 65

)DOC");
66 67 68
  }
};

D
dongzhihong 已提交
69
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
70 71 72
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

73
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
74 75 76 77 78 79
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
80

Q
Qiao Longfei 已提交
81
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
D
dongzhihong 已提交
82 83 84
  }
};

85 86 87
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
88
namespace ops = paddle::operators;
D
dongzhihong 已提交
89

90 91
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
            ops::SoftmaxOpGrad);
D
dongzhihong 已提交
92
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
93 94 95 96
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>);