fleet_base.py 49.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
import numpy as np
21
from paddle.fluid.framework import dygraph_only
22
from paddle.fluid import compiler
23
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
24
from .strategy_compiler import StrategyCompiler
25
from .distributed_strategy import DistributedStrategy
26 27
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
28
from paddle.fluid.wrapped_decorator import wrap_decorator
29
from paddle.fluid.dygraph import parallel_helper
30
from . import topology as tp
31
from .topology import ParallelMode
32
from ..meta_parallel import TensorParallel, model_parallel_random_seed
J
JZ-LIANG 已提交
33
from ..meta_parallel import PipelineParallel, ShardingParallel
34
from ..meta_optimizers import HybridParallelOptimizer
35
from ..meta_optimizers import HybridParallelGradScaler
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


68
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
69
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
70 71


72 73 74
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
75
    Please reference the https://github.com/PaddlePaddle/FleetX for details
76 77 78 79 80


    Returns:
        Fleet: A Fleet instance

81
    Example for collective training:
1
123malin 已提交
82

83 84
        .. code-block:: python

1
123malin 已提交
85 86
            import paddle
            paddle.enable_static()
87
            import paddle.distributed.fleet as fleet
88 89 90

            fleet.init(is_collective=True)

91 92 93
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
94 95 96 97 98 99 100 101

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
102 103
            import paddle
            paddle.enable_static()
104 105
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
106
            fleet.init(strategy=strategy)
107

108
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
109
            optimizer = fleet.distributed_optimizer(optimizer)
110

111 112
            if fleet.is_first_worker():
                print("this is first worker")
113

114 115
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
116

117 118 119
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
120

121 122
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
123

124 125 126
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
127 128


129 130 131
    """

    def __init__(self):
132
        self._role_maker = None
133
        self.strategy_compiler = None
134
        self._is_collective = False
135
        self._runtime_handle = None
D
Dong Daxiang 已提交
136 137
        self._util = None
        self._context = {}
138

139
    def init(self, role_maker=None, is_collective=False, strategy=None):
140 141 142
        """
        Initialize role_maker in Fleet.

143 144 145 146 147 148 149 150 151 152 153
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
154 155 156 157
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
180
                role = fleet.PaddleCloudRoleMaker()
181
                fleet.init(role)
182

183 184 185 186 187 188
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
189
                fleet.init(strategy=strategy)
190

191
        """
S
ShenLiang 已提交
192 193 194
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
195 196

        if role_maker is None:
197 198 199 200 201 202
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
203 204
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
205
        else:
206 207
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
208
                self._is_collective = role_maker._is_collective
209 210 211 212
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
213
        self._role_maker._generate_role()
214

215 216 217
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

218
        self.strategy_compiler = StrategyCompiler()
219 220 221 222 223 224 225 226 227

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

228
        if paddle.fluid.framework.in_dygraph_mode():
229
            if self.worker_num() == 1:
230 231 232
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
233
                return
234 235 236 237
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
238 239 240 241 242 243 244 245 246
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
247
                paddle.distributed.init_parallel_env()
248

249 250 251 252 253 254 255
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )
W
WangXi 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

            # hybrid group
            if use_sharding is False: return

            sharding_configs = self._user_defined_strategy.sharding_configs
            mp_degree = int(sharding_configs['mp_degree'])

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
290 291 292 293 294 295 296 297

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
298
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
299 300 301

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
302
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
303 304 305 306 307 308 309 310 311 312 313

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
314 315 316 317 318
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
319 320 321

        self._hcg = tp.HybridCommunicateGroup(self._topology)

322 323 324 325 326 327 328 329
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

330 331 332 333 334 335 336 337
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

338 339 340 341 342 343 344
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
345

346 347 348 349 350 351 352 353
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

354
        """
355
        return self._role_maker._is_first_worker()
356 357 358 359 360 361 362

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
363 364 365 366

        Examples:

            .. code-block:: python
1
123malin 已提交
367

368 369 370 371
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

372
        """
373
        return self._role_maker._worker_index()
374 375 376 377 378 379 380

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
381

382
        Examples:
1
123malin 已提交
383

384 385 386 387 388 389
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

390
        """
391
        return self._role_maker._worker_num()
392

393 394 395 396 397 398 399 400 401 402 403 404
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

405 406 407 408 409 410 411
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
412 413

        Examples:
1
123malin 已提交
414

415 416 417 418 419 420
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

421
        """
422
        return self._role_maker._is_worker()
423 424 425

    def worker_endpoints(self, to_string=False):
        """
426
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
427 428 429

        Returns:
            list/string: server endpoints
430 431

        Examples:
1
123malin 已提交
432

433 434 435 436 437 438
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

439 440
        """
        if to_string:
441
            return ",".join(self._role_maker._get_trainer_endpoints())
442
        else:
443
            return self._role_maker._get_trainer_endpoints()
444 445 446 447 448 449 450

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
451 452

        Examples:
1
123malin 已提交
453

454
            .. code-block:: python
1
123malin 已提交
455 456 457 458

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
459
        """
460
        return len(self._role_maker._get_pserver_endpoints())
461 462 463 464 465 466 467

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
468 469

        Examples:
1
123malin 已提交
470

471 472 473 474 475 476
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

477
        """
478
        return self._role_maker._server_index()
479 480 481 482 483 484 485

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
486 487

        Examples:
1
123malin 已提交
488

489 490 491 492 493 494
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

495
        """
496

497
        if to_string:
498
            return ",".join(self._role_maker._get_pserver_endpoints())
499
        else:
500
            return self._role_maker._get_pserver_endpoints()
501 502 503 504 505 506 507 508

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
509 510 511 512

        Examples:

            .. code-block:: python
1
123malin 已提交
513

514 515 516 517
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

518
        """
519
        return self._role_maker._is_server(
520
        ) or self._role_maker._is_heter_worker()
521 522 523

    def barrier_worker(self):
        """
524 525 526 527
        barrier all workers

        Returns:
            None
528
        """
529
        self._role_maker._barrier("worker")
530

531
    @is_non_distributed_check
532
    @inited_runtime_handler
533 534
    def init_worker(self):
        """
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

553 554 555
        """
        self._runtime_handle._init_worker()

556
    @is_non_distributed_check
557
    @inited_runtime_handler
558
    def init_server(self, *args, **kwargs):
559
        """
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

579
        """
580
        self._runtime_handle._init_server(*args, **kwargs)
581

T
Thunderbrook 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_model("path", "mode")

        """
        self._runtime_handle.load_model(path, mode)

605
    @is_non_distributed_check
606
    @inited_runtime_handler
607 608
    def run_server(self):
        """
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

627 628 629
        """
        self._runtime_handle._run_server()

630
    @is_non_distributed_check
631
    @inited_runtime_handler
632 633
    def stop_worker(self):
        """
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

651 652 653
        """
        self._runtime_handle._stop_worker()

T
tangwei12 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode)

697 698 699 700 701 702
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
703 704
                             export_for_deployment=True,
                             mode=0):
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
724 725 726
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
727

728 729
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
730
            export_for_deployment, mode)
731

732
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
733 734
        """

1
123malin 已提交
735
        saves all persistable tensors from :code:`main_program` to
736 737
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
738 739
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
740 741 742
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
743
            executor(Executor): The executor to run for saving persistable tensors.
744 745 746 747 748
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
749
            main_program(Program, optional): The program whose persistbale tensors will
750 751 752 753 754 755 756 757 758 759
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
760 761
                import paddle
                paddle.enable_static()
762 763 764 765 766 767 768
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
769 770
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
771 772

        """
T
tangwei12 已提交
773 774 775
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
776

777 778
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
779

780 781 782
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

783
    def distributed_optimizer(self, optimizer, strategy=None):
784
        """
785 786 787 788 789 790 791
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
792 793 794 795 796
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
797

798
        Returns:
799
            Fleet: instance of fleet.
800 801

        Examples:
802

803
            .. code-block:: python
804

1
123malin 已提交
805
                import paddle
806
                import paddle.distributed.fleet as fleet
1
123malin 已提交
807
                fleet.init(is_collective=True)
808 809 810 811
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

812 813
        """
        self.user_defined_optimizer = optimizer
814

815
        if strategy is not None:
T
tangwei12 已提交
816 817 818 819 820 821 822
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
823
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
824 825

        self._context = {}
S
ShenLiang 已提交
826 827

        if paddle.fluid.framework.in_dygraph_mode():
828 829 830 831 832
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
833 834
        return self

835
    @dygraph_only
836
    def distributed_model(self, model):
837
        """
838 839 840 841 842 843 844
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
845 846

        Examples:
847

848 849
            .. code-block:: python

850 851 852 853 854 855 856 857 858
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
859

860 861
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
862

1
123malin 已提交
863
                # 1. initialize fleet environment
864 865
                fleet.init(is_collective=True)

1
123malin 已提交
866
                # 2. create layer & optimizer
867 868 869 870 871
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
872
                # 3. get data_parallel model using fleet
873 874 875
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
876
                # 4. run layer
877 878 879 880 881 882 883 884 885 886 887 888
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

889

890
        """
891 892 893
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
J
JZ-LIANG 已提交
894 895 896 897 898

        if self._hcg.get_parallel_mode() == ParallelMode.SHARDING_PARALLEL:
            distributed_model = ShardingParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
        elif self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
899 900 901 902 903 904 905 906
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
907 908
        elif self._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
            distributed_model = TensorParallel(
909
                model, self._hcg, strategy=self._user_defined_strategy)
910 911 912
        elif self._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
            distributed_model = PipelineParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
J
JZ-LIANG 已提交
913

914
        return distributed_model
915 916 917 918 919

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
920
        (Only work in dygraph mode)
921 922 923 924 925 926 927

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

928 929 930 931 932
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
933

934
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
935
                a = paddle.to_tensor(value)
936

937 938
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
939

940 941 942
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
943 944 945 946 947 948 949 950
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
951
        (Only work in dygraph mode)
952 953 954 955

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

956 957
        Returns:
            None
958 959 960 961

        Examples:
            .. code-block:: python

962 963 964
                import numpy as np
                import paddle
                from paddle.distributed import fleet
965

966 967 968
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
969
                a = paddle.to_tensor(value)
970

971 972
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
973

974 975 976
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
977 978 979
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
980 981 982 983 984 985 986 987
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
988
        (Only work in dygraph mode)
989

990 991 992
        Args:
            value (float|Tensor): the value of learning rate

993 994
        Returns: 
            None 
995 996 997 998

        Examples:
            .. code-block:: python

999 1000 1001
                import numpy as np
                import paddle
                from paddle.distributed import fleet
1002

1003
                fleet.init(is_collective=True)
1004

1005
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1006
                a = paddle.to_tensor(value)
1007

1008 1009
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
1025 1026 1027 1028 1029 1030 1031 1032
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
1033
        (Only work in dygraph mode)
1034 1035 1036 1037 1038

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
1039

1040 1041
            .. code-block:: python

1042 1043 1044 1045 1046
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
1047

1048
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1049
                a = paddle.to_tensor(value)
1050

1051 1052
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1053

1054 1055
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
1056

1057 1058
                lr = adam.get_lr()
                print(lr) # 0.01
1059 1060 1061 1062 1063 1064 1065 1066
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
1067
        (Only work in dygraph mode)
1068

1069 1070
        Returns:
            None
1071 1072

        Examples:
1
123malin 已提交
1073

1074 1075
            .. code-block:: python

1076 1077 1078
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1079

1080 1081 1082 1083 1084
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1085

1086 1087
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1088

1
123malin 已提交
1089
                # 1. initialize fleet environment
1090 1091
                fleet.init(is_collective=True)

1
123malin 已提交
1092
                # 2. create layer & optimizer
1093 1094 1095 1096 1097
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1098
                # 3. get data_parallel model using fleet
1099 1100 1101
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1102
                # 4. run layer
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
1123 1124
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
1125

1126 1127
        Returns: 
            None
1128 1129

        Examples:
1
123malin 已提交
1130

1131 1132
            .. code-block:: python

1133 1134 1135
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1136

1137 1138 1139 1140 1141
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1142

1143 1144
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1145

1
123malin 已提交
1146
                # 1. initialize fleet environment
1147 1148
                fleet.init(is_collective=True)

1
123malin 已提交
1149
                # 2. create layer & optimizer
1150 1151 1152 1153 1154
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1155
                # 3. get data_parallel model using fleet
1156 1157 1158
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1159
                # 4. run layer
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1193 1194
        """Return the real-time loss scaling factor.
        """
1195 1196 1197
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1258
        amp_optimizer = self._get_amp_optimizer()
1259
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1260

D
Dong Daxiang 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1288 1289 1290 1291 1292 1293 1294 1295 1296
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1297
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1298 1299 1300
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1301
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1302 1303
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1304
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1305 1306 1307 1308
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1309
            by minimize and a list of (param, grad) tensor pairs, param is
1310
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1311 1312
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1313 1314 1315
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1316

1317
            .. code-block:: python
1318

1319
                import paddle
1
123malin 已提交
1320
                paddle.enable_static()
1321
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1333

1
123malin 已提交
1334
                fleet.init(is_collective=True)
1335 1336 1337 1338
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1339

1340
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1341 1342

        """
D
Dong Daxiang 已提交
1343 1344 1345
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1346 1347 1348
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1349
            self._context = context
1350 1351
            return target_opt.minimize(loss)

1352 1353
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1354 1355
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1356 1357
        if startup_program == None:
            self.origin_startup_program = \
1358 1359
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1360 1361 1362
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1363

1364 1365
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1366 1367 1368 1369 1370

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1371

D
Dong Daxiang 已提交
1372 1373 1374
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1375 1376 1377 1378 1379 1380

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1381
        if copy_user_defined_strategy._is_strict_auto():
1382 1383
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1384
                opt._enable_strategy(copy_user_defined_strategy, context)
1385

1386 1387
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1388
        can_not_apply_optimizer_list = []
1389 1390 1391 1392
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1393
                                copy_user_defined_strategy)
1394 1395
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1396
            elif opt._can_apply() and opt._is_graph_out():
1397
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1398 1399
            else:
                can_not_apply_optimizer_list.append(opt)
1400
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1401
        meta_optimizer, graph_optimizer = \
1402 1403
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1404
                copy_user_defined_strategy, valid_optimizer_list,
1405
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1406

D
Dong Daxiang 已提交
1407
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1408 1409 1410
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1411

1412 1413 1414 1415 1416 1417
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1418
        self._context = context
1419

D
Dong Daxiang 已提交
1420
        self.valid_strategy = valid_strategy
1421
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1422

1423 1424
        optimize_ops = []
        params_grads = []
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1435
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1436

1437 1438
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1439
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1440

1441
            default_program = paddle.static.default_main_program()
1442 1443 1444 1445

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1446 1447
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1448
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1449

1450 1451
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1452

1453
        if graph_optimizer:
D
Dong Daxiang 已提交
1454
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1455
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1456 1457 1458 1459
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1460 1461 1462
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1463
        if self._runtime_handle is None:
1464
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1465

1466 1467
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1468 1469

        return optimize_ops, params_grads
1470 1471 1472 1473

    @dygraph_only
    def distributed_scaler(self, scaler):
        return HybridParallelGradScaler(scaler, self._hcg)