fleet_base.py 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29

30

31 32 33 34 35 36 37 38 39 40 41 42
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


59
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
60
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
61 62


63 64 65
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
66
    Please reference the https://github.com/PaddlePaddle/FleetX for details
67 68 69 70 71


    Returns:
        Fleet: A Fleet instance

72
    Example for collective training:
1
123malin 已提交
73

74 75
        .. code-block:: python

1
123malin 已提交
76 77
            import paddle
            paddle.enable_static()
78
            import paddle.distributed.fleet as fleet
79 80 81

            fleet.init(is_collective=True)

82 83 84
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
85 86 87 88 89 90 91 92

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
93 94
            import paddle
            paddle.enable_static()
95 96
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
97
            fleet.init(strategy=strategy)
98

99
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
100
            optimizer = fleet.distributed_optimizer(optimizer)
101

102 103
            if fleet.is_first_worker():
                print("this is first worker")
104

105 106
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
107

108 109 110
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
111

112 113
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
114

115 116 117
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
118 119


120 121 122
    """

    def __init__(self):
123
        self._role_maker = None
124
        self.strategy_compiler = None
125
        self._is_collective = False
126
        self._runtime_handle = None
D
Dong Daxiang 已提交
127 128
        self._util = None
        self._context = {}
129

130
    def init(self, role_maker=None, is_collective=False, strategy=None):
131 132 133
        """
        Initialize role_maker in Fleet.

134 135 136 137 138 139 140 141 142 143 144
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
145 146 147 148
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
171
                role = fleet.PaddleCloudRoleMaker()
172
                fleet.init(role)
173

174 175 176 177 178 179
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
180
                fleet.init(strategy=strategy)
181

182
        """
S
ShenLiang 已提交
183 184 185
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
186 187

        if role_maker is None:
188 189 190 191 192 193
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
194 195
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
196
        else:
197 198
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
199
                self._is_collective = role_maker._is_collective
200 201 202 203
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
204
        self._role_maker._generate_role()
205

206 207 208
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

209
        self.strategy_compiler = StrategyCompiler()
210 211 212 213 214 215 216 217 218

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

219
        if paddle.fluid.framework.in_dygraph_mode():
220 221
            if self.worker_num() == 1:
                return
222 223 224 225
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
226 227 228 229 230 231 232 233 234
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
235
                paddle.distributed.init_parallel_env()
236 237 238 239 240 241 242 243

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
244

245 246 247 248 249 250 251 252
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

253
        """
254
        return self._role_maker._is_first_worker()
255 256 257 258 259 260 261

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
262 263 264 265

        Examples:

            .. code-block:: python
1
123malin 已提交
266

267 268 269 270
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

271
        """
272
        return self._role_maker._worker_index()
273 274 275 276 277 278 279

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
280

281
        Examples:
1
123malin 已提交
282

283 284 285 286 287 288
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

289
        """
290
        return self._role_maker._worker_num()
291 292 293 294 295 296 297 298

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
299 300

        Examples:
1
123malin 已提交
301

302 303 304 305 306 307
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

308
        """
309
        return self._role_maker._is_worker()
310 311 312

    def worker_endpoints(self, to_string=False):
        """
313
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
314 315 316

        Returns:
            list/string: server endpoints
317 318

        Examples:
1
123malin 已提交
319

320 321 322 323 324 325
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

326 327
        """
        if to_string:
328
            return ",".join(self._role_maker._get_trainer_endpoints())
329
        else:
330
            return self._role_maker._get_trainer_endpoints()
331 332 333 334 335 336 337

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
338 339

        Examples:
1
123malin 已提交
340

341
            .. code-block:: python
1
123malin 已提交
342 343 344 345

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
346
        """
347
        return len(self._role_maker._get_pserver_endpoints())
348 349 350 351 352 353 354

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
355 356

        Examples:
1
123malin 已提交
357

358 359 360 361 362 363
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

364
        """
365
        return self._role_maker._server_index()
366 367 368 369 370 371 372

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
373 374

        Examples:
1
123malin 已提交
375

376 377 378 379 380 381
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

382
        """
383

384
        if to_string:
385
            return ",".join(self._role_maker._get_pserver_endpoints())
386
        else:
387
            return self._role_maker._get_pserver_endpoints()
388 389 390 391 392 393 394 395

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
396 397 398 399

        Examples:

            .. code-block:: python
1
123malin 已提交
400

401 402 403 404
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

405
        """
406
        return self._role_maker._is_server(
407
        ) or self._role_maker._is_heter_worker()
408 409 410

    def barrier_worker(self):
        """
411 412 413 414
        barrier all workers

        Returns:
            None
415
        """
416
        self._role_maker._barrier("worker")
417

418
    @is_non_distributed_check
419
    @inited_runtime_handler
420 421
    def init_worker(self):
        """
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

440 441 442
        """
        self._runtime_handle._init_worker()

443
    @is_non_distributed_check
444
    @inited_runtime_handler
445
    def init_server(self, *args, **kwargs):
446
        """
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

466
        """
467
        self._runtime_handle._init_server(*args, **kwargs)
468

469
    @is_non_distributed_check
470
    @inited_runtime_handler
471 472
    def run_server(self):
        """
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

491 492 493
        """
        self._runtime_handle._run_server()

494
    @is_non_distributed_check
495
    @inited_runtime_handler
496 497
    def stop_worker(self):
        """
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

515 516 517
        """
        self._runtime_handle._stop_worker()

518 519 520 521 522 523
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
524 525
                             export_for_deployment=True,
                             mode=0):
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

546 547
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
548
            export_for_deployment, mode)
549

550
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
551 552
        """

1
123malin 已提交
553
        saves all persistable tensors from :code:`main_program` to
554 555
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
556 557
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
558 559 560
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
561
            executor(Executor): The executor to run for saving persistable tensors.
562 563 564 565 566
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
567
            main_program(Program, optional): The program whose persistbale tensors will
568 569 570 571 572 573 574 575 576 577
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
578 579
                import paddle
                paddle.enable_static()
580 581 582 583 584 585 586
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
587 588
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
589 590 591

        """

592 593
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
594

595 596 597
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

598
    def distributed_optimizer(self, optimizer, strategy=None):
599
        """
600 601 602 603 604 605 606
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
607 608 609 610 611
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
612

613
        Returns:
614
            Fleet: instance of fleet.
615 616

        Examples:
617

618
            .. code-block:: python
619

1
123malin 已提交
620
                import paddle
621
                import paddle.distributed.fleet as fleet
1
123malin 已提交
622
                fleet.init(is_collective=True)
623 624 625 626
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

627 628
        """
        self.user_defined_optimizer = optimizer
629

630 631
        if strategy is not None:
            warnings.warn(
S
ShenLiang 已提交
632 633 634 635
                "It is recommended to use DistributedStrategy "
                "in fleet.init(). The strategy here is only for compatibility. "
                "If the strategy in fleet.distributed_optimizer() is "
                "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
636 637
                "which will take effect in distributed training.")
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
638 639

        self._context = {}
S
ShenLiang 已提交
640 641 642 643 644

        # TODO(shenliang03): This is a temporary solution to support amp. In the case of a dynamic graph, 
        # the optimizer is returned directly. This problem will be fixed in the future.
        if paddle.fluid.framework.in_dygraph_mode():
            return optimizer
645 646
        return self

647
    @dygraph_only
648
    def distributed_model(self, model):
649
        """
650 651 652 653 654 655 656
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
657 658

        Examples:
659

660 661
            .. code-block:: python

662 663 664 665 666 667 668 669 670
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
671

672 673
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
674

1
123malin 已提交
675
                # 1. initialize fleet environment
676 677
                fleet.init(is_collective=True)

1
123malin 已提交
678
                # 2. create layer & optimizer
679 680 681 682 683
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
684
                # 3. get data_parallel model using fleet
685 686 687
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
688
                # 4. run layer
689 690 691 692 693 694 695 696 697 698 699 700
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

701

702 703
        """
        assert model is not None
704 705
        self.model = paddle.DataParallel(
            model,
706 707 708
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
            last_comm_group_size_MB)
709 710 711 712 713 714
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
715
        (Only work in dygraph mode)
716 717 718 719 720 721 722

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

723 724 725 726 727
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
728

729
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
730
                a = paddle.to_tensor(value)
731

732 733
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
734

735 736 737
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
738 739 740 741 742 743 744 745
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
746
        (Only work in dygraph mode)
747 748 749 750

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

751 752
        Returns:
            None
753 754 755 756

        Examples:
            .. code-block:: python

757 758 759
                import numpy as np
                import paddle
                from paddle.distributed import fleet
760

761 762 763
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
764
                a = paddle.to_tensor(value)
765

766 767
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
768

769 770 771
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
772 773 774
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
775 776 777 778 779 780 781 782
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
783
        (Only work in dygraph mode)
784

785 786 787
        Args:
            value (float|Tensor): the value of learning rate

788 789
        Returns: 
            None 
790 791 792 793

        Examples:
            .. code-block:: python

794 795 796
                import numpy as np
                import paddle
                from paddle.distributed import fleet
797

798
                fleet.init(is_collective=True)
799

800
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
801
                a = paddle.to_tensor(value)
802

803 804
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
805

806 807 808 809 810 811 812 813 814 815 816 817 818 819
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
820 821 822 823 824 825 826 827
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
828
        (Only work in dygraph mode)
829 830 831 832 833

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
834

835 836
            .. code-block:: python

837 838 839 840 841
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
842

843
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
844
                a = paddle.to_tensor(value)
845

846 847
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
848

849 850
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
851

852 853
                lr = adam.get_lr()
                print(lr) # 0.01
854 855 856 857 858 859 860 861
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
862
        (Only work in dygraph mode)
863

864 865
        Returns:
            None
866 867

        Examples:
1
123malin 已提交
868

869 870
            .. code-block:: python

871 872 873
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
874

875 876 877 878 879
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
880

881 882
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
883

1
123malin 已提交
884
                # 1. initialize fleet environment
885 886
                fleet.init(is_collective=True)

1
123malin 已提交
887
                # 2. create layer & optimizer
888 889 890 891 892
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
893
                # 3. get data_parallel model using fleet
894 895 896
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
897
                # 4. run layer
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
918 919
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
920

921 922
        Returns: 
            None
923 924

        Examples:
1
123malin 已提交
925

926 927
            .. code-block:: python

928 929 930
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
931

932 933 934 935 936
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
937

938 939
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
940

1
123malin 已提交
941
                # 1. initialize fleet environment
942 943
                fleet.init(is_collective=True)

1
123malin 已提交
944
                # 2. create layer & optimizer
945 946 947 948 949
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
950
                # 3. get data_parallel model using fleet
951 952 953
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
954
                # 4. run layer
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

H
huangxu96 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1031

H
huangxu96 已提交
1032
        # imitate target optimizer retrieval
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."

        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1047

D
Dong Daxiang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1075 1076 1077 1078 1079 1080 1081 1082 1083
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1084
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1085 1086 1087
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1088
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1089 1090
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1091
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1092 1093 1094 1095
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1096
            by minimize and a list of (param, grad) tensor pairs, param is
1097
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1098 1099
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1100 1101 1102
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1103

1104
            .. code-block:: python
1105

1106
                import paddle
1
123malin 已提交
1107
                paddle.enable_static()
1108
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1120

1
123malin 已提交
1121
                fleet.init(is_collective=True)
1122 1123 1124 1125
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1126

1127
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1128 1129

        """
D
Dong Daxiang 已提交
1130 1131 1132
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1133 1134 1135
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1136
            self._context = context
1137 1138
            return target_opt.minimize(loss)

1139 1140
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1141 1142
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1143 1144
        if startup_program == None:
            self.origin_startup_program = \
1145 1146
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1147 1148 1149
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1150

1151 1152
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1153 1154 1155 1156 1157

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1158

D
Dong Daxiang 已提交
1159 1160 1161
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1162 1163 1164 1165 1166 1167

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1168
        if copy_user_defined_strategy._is_strict_auto():
1169 1170
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1171
                opt._enable_strategy(copy_user_defined_strategy, context)
1172

1173 1174
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1175
        can_not_apply_optimizer_list = []
1176 1177 1178 1179
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1180
                                copy_user_defined_strategy)
1181 1182
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1183
            elif opt._can_apply() and opt._is_graph_out():
1184
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1185 1186
            else:
                can_not_apply_optimizer_list.append(opt)
1187
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1188
        meta_optimizer, graph_optimizer = \
1189 1190
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1191
                copy_user_defined_strategy, valid_optimizer_list,
1192
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1193

D
Dong Daxiang 已提交
1194
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1195 1196 1197
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1198

1199 1200 1201 1202 1203 1204
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1205
        self._context = context
1206

D
Dong Daxiang 已提交
1207
        self.valid_strategy = valid_strategy
1208
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1209

1210 1211
        optimize_ops = []
        params_grads = []
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1222
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1223

1224 1225
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1226
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1227

1228
            default_program = paddle.static.default_main_program()
1229 1230 1231 1232

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1233 1234
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1235
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1236

1237 1238
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1239

1240
        if graph_optimizer:
D
Dong Daxiang 已提交
1241
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1242
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1243 1244 1245 1246
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1247 1248 1249
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1250
        if self._runtime_handle is None:
1251
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1252

1253 1254
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1255 1256

        return optimize_ops, params_grads