fleet_base.py 42.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29

30

31 32 33 34 35 36 37 38 39 40 41 42
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


59
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
60
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
61 62


63 64 65
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
66
    Please reference the https://github.com/PaddlePaddle/FleetX for details
67 68 69 70 71


    Returns:
        Fleet: A Fleet instance

72
    Example for collective training:
1
123malin 已提交
73

74 75
        .. code-block:: python

1
123malin 已提交
76 77
            import paddle
            paddle.enable_static()
78
            import paddle.distributed.fleet as fleet
79 80 81

            fleet.init(is_collective=True)

82 83 84
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
85 86 87 88 89 90 91 92

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
93 94
            import paddle
            paddle.enable_static()
95 96
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
97
            fleet.init(strategy=strategy)
98

99
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
100
            optimizer = fleet.distributed_optimizer(optimizer)
101

102 103
            if fleet.is_first_worker():
                print("this is first worker")
104

105 106
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
107

108 109 110
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
111

112 113
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
114

115 116 117
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
118 119


120 121 122
    """

    def __init__(self):
123
        self._role_maker = None
124
        self.strategy_compiler = None
125
        self._is_collective = False
126
        self._runtime_handle = None
D
Dong Daxiang 已提交
127 128
        self._util = None
        self._context = {}
129

130
    def init(self, role_maker=None, is_collective=False, strategy=None):
131 132 133
        """
        Initialize role_maker in Fleet.

134 135 136 137 138 139 140 141 142 143 144
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
145 146 147 148
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
171
                role = fleet.PaddleCloudRoleMaker()
172
                fleet.init(role)
173

174 175 176 177 178 179
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
180
                fleet.init(strategy=strategy)
181

182
        """
S
ShenLiang 已提交
183 184 185
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
186 187

        if role_maker is None:
188 189 190 191 192 193
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
194 195
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
196
        else:
197 198
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
199
                self._is_collective = role_maker._is_collective
200 201 202 203
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
204
        self._role_maker._generate_role()
205

206 207 208
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

209
        self.strategy_compiler = StrategyCompiler()
210 211 212 213 214 215 216 217 218

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

219
        if paddle.fluid.framework.in_dygraph_mode():
220 221
            if self.worker_num() == 1:
                return
222 223 224 225
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
226 227 228 229 230 231 232 233 234
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
235
                paddle.distributed.init_parallel_env()
236 237 238 239 240 241 242 243

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
244

245 246 247 248 249 250 251 252
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

253
        """
254
        return self._role_maker._is_first_worker()
255 256 257 258 259 260 261

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
262 263 264 265

        Examples:

            .. code-block:: python
1
123malin 已提交
266

267 268 269 270
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

271
        """
272
        return self._role_maker._worker_index()
273 274 275 276 277 278 279

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
280

281
        Examples:
1
123malin 已提交
282

283 284 285 286 287 288
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

289
        """
290
        return self._role_maker._worker_num()
291

292 293 294 295 296 297 298 299 300 301 302 303
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

304 305 306 307 308 309 310
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
311 312

        Examples:
1
123malin 已提交
313

314 315 316 317 318 319
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

320
        """
321
        return self._role_maker._is_worker()
322 323 324

    def worker_endpoints(self, to_string=False):
        """
325
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
326 327 328

        Returns:
            list/string: server endpoints
329 330

        Examples:
1
123malin 已提交
331

332 333 334 335 336 337
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

338 339
        """
        if to_string:
340
            return ",".join(self._role_maker._get_trainer_endpoints())
341
        else:
342
            return self._role_maker._get_trainer_endpoints()
343 344 345 346 347 348 349

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
350 351

        Examples:
1
123malin 已提交
352

353
            .. code-block:: python
1
123malin 已提交
354 355 356 357

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
358
        """
359
        return len(self._role_maker._get_pserver_endpoints())
360 361 362 363 364 365 366

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
367 368

        Examples:
1
123malin 已提交
369

370 371 372 373 374 375
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

376
        """
377
        return self._role_maker._server_index()
378 379 380 381 382 383 384

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
385 386

        Examples:
1
123malin 已提交
387

388 389 390 391 392 393
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

394
        """
395

396
        if to_string:
397
            return ",".join(self._role_maker._get_pserver_endpoints())
398
        else:
399
            return self._role_maker._get_pserver_endpoints()
400 401 402 403 404 405 406 407

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
408 409 410 411

        Examples:

            .. code-block:: python
1
123malin 已提交
412

413 414 415 416
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

417
        """
418
        return self._role_maker._is_server(
419
        ) or self._role_maker._is_heter_worker()
420 421 422

    def barrier_worker(self):
        """
423 424 425 426
        barrier all workers

        Returns:
            None
427
        """
428
        self._role_maker._barrier("worker")
429

430
    @is_non_distributed_check
431
    @inited_runtime_handler
432 433
    def init_worker(self):
        """
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

452 453 454
        """
        self._runtime_handle._init_worker()

455
    @is_non_distributed_check
456
    @inited_runtime_handler
457
    def init_server(self, *args, **kwargs):
458
        """
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

478
        """
479
        self._runtime_handle._init_server(*args, **kwargs)
480

481
    @is_non_distributed_check
482
    @inited_runtime_handler
483 484
    def run_server(self):
        """
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

503 504 505
        """
        self._runtime_handle._run_server()

506
    @is_non_distributed_check
507
    @inited_runtime_handler
508 509
    def stop_worker(self):
        """
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

527 528 529
        """
        self._runtime_handle._stop_worker()

530 531 532 533 534 535
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
536 537
                             export_for_deployment=True,
                             mode=0):
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

558 559
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
560
            export_for_deployment, mode)
561

562
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
563 564
        """

1
123malin 已提交
565
        saves all persistable tensors from :code:`main_program` to
566 567
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
568 569
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
570 571 572
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
573
            executor(Executor): The executor to run for saving persistable tensors.
574 575 576 577 578
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
579
            main_program(Program, optional): The program whose persistbale tensors will
580 581 582 583 584 585 586 587 588 589
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
590 591
                import paddle
                paddle.enable_static()
592 593 594 595 596 597 598
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
599 600
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
601 602 603

        """

604 605
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
606

607 608 609
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

610
    def distributed_optimizer(self, optimizer, strategy=None):
611
        """
612 613 614 615 616 617 618
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
619 620 621 622 623
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
624

625
        Returns:
626
            Fleet: instance of fleet.
627 628

        Examples:
629

630
            .. code-block:: python
631

1
123malin 已提交
632
                import paddle
633
                import paddle.distributed.fleet as fleet
1
123malin 已提交
634
                fleet.init(is_collective=True)
635 636 637 638
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

639 640
        """
        self.user_defined_optimizer = optimizer
641

642
        if strategy is not None:
T
tangwei12 已提交
643 644 645 646 647 648 649
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
650
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
651 652

        self._context = {}
S
ShenLiang 已提交
653 654 655 656 657

        # TODO(shenliang03): This is a temporary solution to support amp. In the case of a dynamic graph, 
        # the optimizer is returned directly. This problem will be fixed in the future.
        if paddle.fluid.framework.in_dygraph_mode():
            return optimizer
658 659
        return self

660
    @dygraph_only
661
    def distributed_model(self, model):
662
        """
663 664 665 666 667 668 669
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
670 671

        Examples:
672

673 674
            .. code-block:: python

675 676 677 678 679 680 681 682 683
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
684

685 686
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
687

1
123malin 已提交
688
                # 1. initialize fleet environment
689 690
                fleet.init(is_collective=True)

1
123malin 已提交
691
                # 2. create layer & optimizer
692 693 694 695 696
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
697
                # 3. get data_parallel model using fleet
698 699 700
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
701
                # 4. run layer
702 703 704 705 706 707 708 709 710 711 712 713
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

714

715 716
        """
        assert model is not None
717 718
        self.model = paddle.DataParallel(
            model,
719 720
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
721 722 723
            last_comm_group_size_MB,
            find_unused_parameters=self._user_defined_strategy.
            find_unused_parameters)
724 725 726 727 728 729
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
730
        (Only work in dygraph mode)
731 732 733 734 735 736 737

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

738 739 740 741 742
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
743

744
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
745
                a = paddle.to_tensor(value)
746

747 748
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
749

750 751 752
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
753 754 755 756 757 758 759 760
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
761
        (Only work in dygraph mode)
762 763 764 765

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

766 767
        Returns:
            None
768 769 770 771

        Examples:
            .. code-block:: python

772 773 774
                import numpy as np
                import paddle
                from paddle.distributed import fleet
775

776 777 778
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
779
                a = paddle.to_tensor(value)
780

781 782
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
783

784 785 786
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
787 788 789
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
790 791 792 793 794 795 796 797
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
798
        (Only work in dygraph mode)
799

800 801 802
        Args:
            value (float|Tensor): the value of learning rate

803 804
        Returns: 
            None 
805 806 807 808

        Examples:
            .. code-block:: python

809 810 811
                import numpy as np
                import paddle
                from paddle.distributed import fleet
812

813
                fleet.init(is_collective=True)
814

815
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
816
                a = paddle.to_tensor(value)
817

818 819
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
835 836 837 838 839 840 841 842
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
843
        (Only work in dygraph mode)
844 845 846 847 848

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
849

850 851
            .. code-block:: python

852 853 854 855 856
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
857

858
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
859
                a = paddle.to_tensor(value)
860

861 862
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
863

864 865
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
866

867 868
                lr = adam.get_lr()
                print(lr) # 0.01
869 870 871 872 873 874 875 876
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
877
        (Only work in dygraph mode)
878

879 880
        Returns:
            None
881 882

        Examples:
1
123malin 已提交
883

884 885
            .. code-block:: python

886 887 888
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
889

890 891 892 893 894
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
895

896 897
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
898

1
123malin 已提交
899
                # 1. initialize fleet environment
900 901
                fleet.init(is_collective=True)

1
123malin 已提交
902
                # 2. create layer & optimizer
903 904 905 906 907
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
908
                # 3. get data_parallel model using fleet
909 910 911
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
912
                # 4. run layer
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
933 934
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
935

936 937
        Returns: 
            None
938 939

        Examples:
1
123malin 已提交
940

941 942
            .. code-block:: python

943 944 945
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
946

947 948 949 950 951
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
952

953 954
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
955

1
123malin 已提交
956
                # 1. initialize fleet environment
957 958
                fleet.init(is_collective=True)

1
123malin 已提交
959
                # 2. create layer & optimizer
960 961 962 963 964
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
965
                # 3. get data_parallel model using fleet
966 967 968
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
969
                # 4. run layer
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

H
huangxu96 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1046

H
huangxu96 已提交
1047
        # imitate target optimizer retrieval
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."

        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1062

D
Dong Daxiang 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1090 1091 1092 1093 1094 1095 1096 1097 1098
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1099
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1100 1101 1102
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1103
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1104 1105
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1106
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1107 1108 1109 1110
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1111
            by minimize and a list of (param, grad) tensor pairs, param is
1112
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1113 1114
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1115 1116 1117
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1118

1119
            .. code-block:: python
1120

1121
                import paddle
1
123malin 已提交
1122
                paddle.enable_static()
1123
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1135

1
123malin 已提交
1136
                fleet.init(is_collective=True)
1137 1138 1139 1140
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1141

1142
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1143 1144

        """
D
Dong Daxiang 已提交
1145 1146 1147
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1148 1149 1150
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1151
            self._context = context
1152 1153
            return target_opt.minimize(loss)

1154 1155
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1156 1157
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1158 1159
        if startup_program == None:
            self.origin_startup_program = \
1160 1161
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1162 1163 1164
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1165

1166 1167
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1168 1169 1170 1171 1172

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1173

D
Dong Daxiang 已提交
1174 1175 1176
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1177 1178 1179 1180 1181 1182

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1183
        if copy_user_defined_strategy._is_strict_auto():
1184 1185
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1186
                opt._enable_strategy(copy_user_defined_strategy, context)
1187

1188 1189
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1190
        can_not_apply_optimizer_list = []
1191 1192 1193 1194
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1195
                                copy_user_defined_strategy)
1196 1197
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1198
            elif opt._can_apply() and opt._is_graph_out():
1199
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1200 1201
            else:
                can_not_apply_optimizer_list.append(opt)
1202
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1203
        meta_optimizer, graph_optimizer = \
1204 1205
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1206
                copy_user_defined_strategy, valid_optimizer_list,
1207
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1208

D
Dong Daxiang 已提交
1209
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1210 1211 1212
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1213

1214 1215 1216 1217 1218 1219
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1220
        self._context = context
1221

D
Dong Daxiang 已提交
1222
        self.valid_strategy = valid_strategy
1223
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1224

1225 1226
        optimize_ops = []
        params_grads = []
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1237
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1238

1239 1240
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1241
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1242

1243
            default_program = paddle.static.default_main_program()
1244 1245 1246 1247

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1248 1249
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1250
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1251

1252 1253
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1254

1255
        if graph_optimizer:
D
Dong Daxiang 已提交
1256
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1257
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1258 1259 1260 1261
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1262 1263 1264
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1265
        if self._runtime_handle is None:
1266
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1267

1268 1269
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1270 1271

        return optimize_ops, params_grads