fleet_base.py 45.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29
from . import topology as tp
30 31 32
from .topology import ParallelMode
from ..meta_parallel import ModelParallel
from ..meta_optimizers import HybridParallelOptimizer
33
from ..meta_optimizers import HybridParallelGradScaler
34

35

36 37 38 39 40 41 42 43 44 45 46 47
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


64
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
65
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
66 67


68 69 70
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
71
    Please reference the https://github.com/PaddlePaddle/FleetX for details
72 73 74 75 76


    Returns:
        Fleet: A Fleet instance

77
    Example for collective training:
1
123malin 已提交
78

79 80
        .. code-block:: python

1
123malin 已提交
81 82
            import paddle
            paddle.enable_static()
83
            import paddle.distributed.fleet as fleet
84 85 86

            fleet.init(is_collective=True)

87 88 89
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
90 91 92 93 94 95 96 97

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
98 99
            import paddle
            paddle.enable_static()
100 101
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
102
            fleet.init(strategy=strategy)
103

104
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
105
            optimizer = fleet.distributed_optimizer(optimizer)
106

107 108
            if fleet.is_first_worker():
                print("this is first worker")
109

110 111
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
112

113 114 115
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
116

117 118
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
119

120 121 122
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
123 124


125 126 127
    """

    def __init__(self):
128
        self._role_maker = None
129
        self.strategy_compiler = None
130
        self._is_collective = False
131
        self._runtime_handle = None
D
Dong Daxiang 已提交
132 133
        self._util = None
        self._context = {}
134

135
    def init(self, role_maker=None, is_collective=False, strategy=None):
136 137 138
        """
        Initialize role_maker in Fleet.

139 140 141 142 143 144 145 146 147 148 149
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
150 151 152 153
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
176
                role = fleet.PaddleCloudRoleMaker()
177
                fleet.init(role)
178

179 180 181 182 183 184
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
185
                fleet.init(strategy=strategy)
186

187
        """
S
ShenLiang 已提交
188 189 190
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
191 192

        if role_maker is None:
193 194 195 196 197 198
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
199 200
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
201
        else:
202 203
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
204
                self._is_collective = role_maker._is_collective
205 206 207 208
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
209
        self._role_maker._generate_role()
210

211 212 213
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

214
        self.strategy_compiler = StrategyCompiler()
215 216 217 218 219 220 221 222 223

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

224
        if paddle.fluid.framework.in_dygraph_mode():
225
            if self.worker_num() == 1:
226 227 228
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
229
                return
230 231 232 233
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
234 235 236 237 238 239 240 241 242
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
243
                paddle.distributed.init_parallel_env()
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
            hybrid_group_names=["data", "pipe", "model"],
            dims=[self.dp_degree, self.pp_degree, self.mp_degree])

        self._hcg = tp.HybridCommunicateGroup(self._topology)

    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

287 288 289 290 291 292 293
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
294

295 296 297 298 299 300 301 302
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

303
        """
304
        return self._role_maker._is_first_worker()
305 306 307 308 309 310 311

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
312 313 314 315

        Examples:

            .. code-block:: python
1
123malin 已提交
316

317 318 319 320
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

321
        """
322
        return self._role_maker._worker_index()
323 324 325 326 327 328 329

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
330

331
        Examples:
1
123malin 已提交
332

333 334 335 336 337 338
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

339
        """
340
        return self._role_maker._worker_num()
341

342 343 344 345 346 347 348 349 350 351 352 353
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

354 355 356 357 358 359 360
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
361 362

        Examples:
1
123malin 已提交
363

364 365 366 367 368 369
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

370
        """
371
        return self._role_maker._is_worker()
372 373 374

    def worker_endpoints(self, to_string=False):
        """
375
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
376 377 378

        Returns:
            list/string: server endpoints
379 380

        Examples:
1
123malin 已提交
381

382 383 384 385 386 387
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

388 389
        """
        if to_string:
390
            return ",".join(self._role_maker._get_trainer_endpoints())
391
        else:
392
            return self._role_maker._get_trainer_endpoints()
393 394 395 396 397 398 399

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
400 401

        Examples:
1
123malin 已提交
402

403
            .. code-block:: python
1
123malin 已提交
404 405 406 407

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
408
        """
409
        return len(self._role_maker._get_pserver_endpoints())
410 411 412 413 414 415 416

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
417 418

        Examples:
1
123malin 已提交
419

420 421 422 423 424 425
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

426
        """
427
        return self._role_maker._server_index()
428 429 430 431 432 433 434

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
435 436

        Examples:
1
123malin 已提交
437

438 439 440 441 442 443
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

444
        """
445

446
        if to_string:
447
            return ",".join(self._role_maker._get_pserver_endpoints())
448
        else:
449
            return self._role_maker._get_pserver_endpoints()
450 451 452 453 454 455 456 457

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
458 459 460 461

        Examples:

            .. code-block:: python
1
123malin 已提交
462

463 464 465 466
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

467
        """
468
        return self._role_maker._is_server(
469
        ) or self._role_maker._is_heter_worker()
470 471 472

    def barrier_worker(self):
        """
473 474 475 476
        barrier all workers

        Returns:
            None
477
        """
478
        self._role_maker._barrier("worker")
479

480
    @is_non_distributed_check
481
    @inited_runtime_handler
482 483
    def init_worker(self):
        """
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

502 503 504
        """
        self._runtime_handle._init_worker()

505
    @is_non_distributed_check
506
    @inited_runtime_handler
507
    def init_server(self, *args, **kwargs):
508
        """
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

528
        """
529
        self._runtime_handle._init_server(*args, **kwargs)
530

531
    @is_non_distributed_check
532
    @inited_runtime_handler
533 534
    def run_server(self):
        """
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

553 554 555
        """
        self._runtime_handle._run_server()

556
    @is_non_distributed_check
557
    @inited_runtime_handler
558 559
    def stop_worker(self):
        """
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

577 578 579
        """
        self._runtime_handle._stop_worker()

580 581 582 583 584 585
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
586 587
                             export_for_deployment=True,
                             mode=0):
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

608 609
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
610
            export_for_deployment, mode)
611

612
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
613 614
        """

1
123malin 已提交
615
        saves all persistable tensors from :code:`main_program` to
616 617
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
618 619
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
620 621 622
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
623
            executor(Executor): The executor to run for saving persistable tensors.
624 625 626 627 628
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
629
            main_program(Program, optional): The program whose persistbale tensors will
630 631 632 633 634 635 636 637 638 639
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
640 641
                import paddle
                paddle.enable_static()
642 643 644 645 646 647 648
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
649 650
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
651 652 653

        """

654 655
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
656

657 658 659
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

660
    def distributed_optimizer(self, optimizer, strategy=None):
661
        """
662 663 664 665 666 667 668
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
669 670 671 672 673
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
674

675
        Returns:
676
            Fleet: instance of fleet.
677 678

        Examples:
679

680
            .. code-block:: python
681

1
123malin 已提交
682
                import paddle
683
                import paddle.distributed.fleet as fleet
1
123malin 已提交
684
                fleet.init(is_collective=True)
685 686 687 688
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

689 690
        """
        self.user_defined_optimizer = optimizer
691

692
        if strategy is not None:
T
tangwei12 已提交
693 694 695 696 697 698 699
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
700
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
701 702

        self._context = {}
S
ShenLiang 已提交
703 704

        if paddle.fluid.framework.in_dygraph_mode():
705 706 707 708 709
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
710 711
        return self

712
    @dygraph_only
713
    def distributed_model(self, model):
714
        """
715 716 717 718 719 720 721
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
722 723

        Examples:
724

725 726
            .. code-block:: python

727 728 729 730 731 732 733 734 735
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
736

737 738
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
739

1
123malin 已提交
740
                # 1. initialize fleet environment
741 742
                fleet.init(is_collective=True)

1
123malin 已提交
743
                # 2. create layer & optimizer
744 745 746 747 748
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
749
                # 3. get data_parallel model using fleet
750 751 752
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
753
                # 4. run layer
754 755 756 757 758 759 760 761 762 763 764 765
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

766

767
        """
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
        if self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
        elif self._hcg.get_parallel_mode() == ParallelMode.MODEL_PARALLEL:
            distributed_model = ModelParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
        return distributed_model
784 785 786 787 788

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
789
        (Only work in dygraph mode)
790 791 792 793 794 795 796

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

797 798 799 800 801
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
802

803
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
804
                a = paddle.to_tensor(value)
805

806 807
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
808

809 810 811
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
812 813 814 815 816 817 818 819
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
820
        (Only work in dygraph mode)
821 822 823 824

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

825 826
        Returns:
            None
827 828 829 830

        Examples:
            .. code-block:: python

831 832 833
                import numpy as np
                import paddle
                from paddle.distributed import fleet
834

835 836 837
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
838
                a = paddle.to_tensor(value)
839

840 841
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
842

843 844 845
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
846 847 848
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
849 850 851 852 853 854 855 856
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
857
        (Only work in dygraph mode)
858

859 860 861
        Args:
            value (float|Tensor): the value of learning rate

862 863
        Returns: 
            None 
864 865 866 867

        Examples:
            .. code-block:: python

868 869 870
                import numpy as np
                import paddle
                from paddle.distributed import fleet
871

872
                fleet.init(is_collective=True)
873

874
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
875
                a = paddle.to_tensor(value)
876

877 878
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
894 895 896 897 898 899 900 901
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
902
        (Only work in dygraph mode)
903 904 905 906 907

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
908

909 910
            .. code-block:: python

911 912 913 914 915
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
916

917
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
918
                a = paddle.to_tensor(value)
919

920 921
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
922

923 924
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
925

926 927
                lr = adam.get_lr()
                print(lr) # 0.01
928 929 930 931 932 933 934 935
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
936
        (Only work in dygraph mode)
937

938 939
        Returns:
            None
940 941

        Examples:
1
123malin 已提交
942

943 944
            .. code-block:: python

945 946 947
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
948

949 950 951 952 953
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
954

955 956
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
957

1
123malin 已提交
958
                # 1. initialize fleet environment
959 960
                fleet.init(is_collective=True)

1
123malin 已提交
961
                # 2. create layer & optimizer
962 963 964 965 966
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
967
                # 3. get data_parallel model using fleet
968 969 970
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
971
                # 4. run layer
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
992 993
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
994

995 996
        Returns: 
            None
997 998

        Examples:
1
123malin 已提交
999

1000 1001
            .. code-block:: python

1002 1003 1004
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1005

1006 1007 1008 1009 1010
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1011

1012 1013
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1014

1
123malin 已提交
1015
                # 1. initialize fleet environment
1016 1017
                fleet.init(is_collective=True)

1
123malin 已提交
1018
                # 2. create layer & optimizer
1019 1020 1021 1022 1023
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1024
                # 3. get data_parallel model using fleet
1025 1026 1027
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1028
                # 4. run layer
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1062 1063
        """Return the real-time loss scaling factor.
        """
1064 1065 1066
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1127
        amp_optimizer = self._get_amp_optimizer()
1128
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1129

D
Dong Daxiang 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1157 1158 1159 1160 1161 1162 1163 1164 1165
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1166
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1167 1168 1169
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1170
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1171 1172
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1173
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1174 1175 1176 1177
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1178
            by minimize and a list of (param, grad) tensor pairs, param is
1179
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1180 1181
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1182 1183 1184
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1185

1186
            .. code-block:: python
1187

1188
                import paddle
1
123malin 已提交
1189
                paddle.enable_static()
1190
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1202

1
123malin 已提交
1203
                fleet.init(is_collective=True)
1204 1205 1206 1207
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1208

1209
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1210 1211

        """
D
Dong Daxiang 已提交
1212 1213 1214
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1215 1216 1217
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1218
            self._context = context
1219 1220
            return target_opt.minimize(loss)

1221 1222
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1223 1224
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1225 1226
        if startup_program == None:
            self.origin_startup_program = \
1227 1228
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1229 1230 1231
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1232

1233 1234
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1235 1236 1237 1238 1239

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1240

D
Dong Daxiang 已提交
1241 1242 1243
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1244 1245 1246 1247 1248 1249

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1250
        if copy_user_defined_strategy._is_strict_auto():
1251 1252
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1253
                opt._enable_strategy(copy_user_defined_strategy, context)
1254

1255 1256
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1257
        can_not_apply_optimizer_list = []
1258 1259 1260 1261
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1262
                                copy_user_defined_strategy)
1263 1264
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1265
            elif opt._can_apply() and opt._is_graph_out():
1266
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1267 1268
            else:
                can_not_apply_optimizer_list.append(opt)
1269
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1270
        meta_optimizer, graph_optimizer = \
1271 1272
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1273
                copy_user_defined_strategy, valid_optimizer_list,
1274
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1275

D
Dong Daxiang 已提交
1276
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1277 1278 1279
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1280

1281 1282 1283 1284 1285 1286
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1287
        self._context = context
1288

D
Dong Daxiang 已提交
1289
        self.valid_strategy = valid_strategy
1290
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1291

1292 1293
        optimize_ops = []
        params_grads = []
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1304
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1305

1306 1307
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1308
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1309

1310
            default_program = paddle.static.default_main_program()
1311 1312 1313 1314

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1315 1316
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1317
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1318

1319 1320
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1321

1322
        if graph_optimizer:
D
Dong Daxiang 已提交
1323
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1324
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1325 1326 1327 1328
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1329 1330 1331
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1332
        if self._runtime_handle is None:
1333
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1334

1335 1336
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1337 1338

        return optimize_ops, params_grads
1339 1340 1341 1342

    @dygraph_only
    def distributed_scaler(self, scaler):
        return HybridParallelGradScaler(scaler, self._hcg)