fleet_base.py 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29
from . import topology as tp
30 31 32
from .topology import ParallelMode
from ..meta_parallel import ModelParallel
from ..meta_optimizers import HybridParallelOptimizer
33

34

35 36 37 38 39 40 41 42 43 44 45 46
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


63
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
64
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
65 66


67 68 69
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
70
    Please reference the https://github.com/PaddlePaddle/FleetX for details
71 72 73 74 75


    Returns:
        Fleet: A Fleet instance

76
    Example for collective training:
1
123malin 已提交
77

78 79
        .. code-block:: python

1
123malin 已提交
80 81
            import paddle
            paddle.enable_static()
82
            import paddle.distributed.fleet as fleet
83 84 85

            fleet.init(is_collective=True)

86 87 88
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
89 90 91 92 93 94 95 96

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
97 98
            import paddle
            paddle.enable_static()
99 100
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
101
            fleet.init(strategy=strategy)
102

103
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
104
            optimizer = fleet.distributed_optimizer(optimizer)
105

106 107
            if fleet.is_first_worker():
                print("this is first worker")
108

109 110
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
111

112 113 114
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
115

116 117
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
118

119 120 121
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
122 123


124 125 126
    """

    def __init__(self):
127
        self._role_maker = None
128
        self.strategy_compiler = None
129
        self._is_collective = False
130
        self._runtime_handle = None
D
Dong Daxiang 已提交
131 132
        self._util = None
        self._context = {}
133

134
    def init(self, role_maker=None, is_collective=False, strategy=None):
135 136 137
        """
        Initialize role_maker in Fleet.

138 139 140 141 142 143 144 145 146 147 148
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
149 150 151 152
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
175
                role = fleet.PaddleCloudRoleMaker()
176
                fleet.init(role)
177

178 179 180 181 182 183
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
184
                fleet.init(strategy=strategy)
185

186
        """
S
ShenLiang 已提交
187 188 189
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
190 191

        if role_maker is None:
192 193 194 195 196 197
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
198 199
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
200
        else:
201 202
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
203
                self._is_collective = role_maker._is_collective
204 205 206 207
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
208
        self._role_maker._generate_role()
209

210 211 212
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

213
        self.strategy_compiler = StrategyCompiler()
214 215 216 217 218 219 220 221 222

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

223
        if paddle.fluid.framework.in_dygraph_mode():
224
            if self.worker_num() == 1:
225 226 227
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
228
                return
229 230 231 232
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
233 234 235 236 237 238 239 240 241
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
242
                paddle.distributed.init_parallel_env()
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
            hybrid_group_names=["data", "pipe", "model"],
            dims=[self.dp_degree, self.pp_degree, self.mp_degree])

        self._hcg = tp.HybridCommunicateGroup(self._topology)

    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

286 287 288 289 290 291 292
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
293

294 295 296 297 298 299 300 301
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

302
        """
303
        return self._role_maker._is_first_worker()
304 305 306 307 308 309 310

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
311 312 313 314

        Examples:

            .. code-block:: python
1
123malin 已提交
315

316 317 318 319
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

320
        """
321
        return self._role_maker._worker_index()
322 323 324 325 326 327 328

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
329

330
        Examples:
1
123malin 已提交
331

332 333 334 335 336 337
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

338
        """
339
        return self._role_maker._worker_num()
340

341 342 343 344 345 346 347 348 349 350 351 352
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

353 354 355 356 357 358 359
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
360 361

        Examples:
1
123malin 已提交
362

363 364 365 366 367 368
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

369
        """
370
        return self._role_maker._is_worker()
371 372 373

    def worker_endpoints(self, to_string=False):
        """
374
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
375 376 377

        Returns:
            list/string: server endpoints
378 379

        Examples:
1
123malin 已提交
380

381 382 383 384 385 386
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

387 388
        """
        if to_string:
389
            return ",".join(self._role_maker._get_trainer_endpoints())
390
        else:
391
            return self._role_maker._get_trainer_endpoints()
392 393 394 395 396 397 398

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
399 400

        Examples:
1
123malin 已提交
401

402
            .. code-block:: python
1
123malin 已提交
403 404 405 406

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
407
        """
408
        return len(self._role_maker._get_pserver_endpoints())
409 410 411 412 413 414 415

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
416 417

        Examples:
1
123malin 已提交
418

419 420 421 422 423 424
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

425
        """
426
        return self._role_maker._server_index()
427 428 429 430 431 432 433

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
434 435

        Examples:
1
123malin 已提交
436

437 438 439 440 441 442
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

443
        """
444

445
        if to_string:
446
            return ",".join(self._role_maker._get_pserver_endpoints())
447
        else:
448
            return self._role_maker._get_pserver_endpoints()
449 450 451 452 453 454 455 456

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
457 458 459 460

        Examples:

            .. code-block:: python
1
123malin 已提交
461

462 463 464 465
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

466
        """
467
        return self._role_maker._is_server(
468
        ) or self._role_maker._is_heter_worker()
469 470 471

    def barrier_worker(self):
        """
472 473 474 475
        barrier all workers

        Returns:
            None
476
        """
477
        self._role_maker._barrier("worker")
478

479
    @is_non_distributed_check
480
    @inited_runtime_handler
481 482
    def init_worker(self):
        """
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

501 502 503
        """
        self._runtime_handle._init_worker()

504
    @is_non_distributed_check
505
    @inited_runtime_handler
506
    def init_server(self, *args, **kwargs):
507
        """
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

527
        """
528
        self._runtime_handle._init_server(*args, **kwargs)
529

530
    @is_non_distributed_check
531
    @inited_runtime_handler
532 533
    def run_server(self):
        """
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

552 553 554
        """
        self._runtime_handle._run_server()

555
    @is_non_distributed_check
556
    @inited_runtime_handler
557 558
    def stop_worker(self):
        """
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

576 577 578
        """
        self._runtime_handle._stop_worker()

579 580 581 582 583 584
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
585 586
                             export_for_deployment=True,
                             mode=0):
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

607 608
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
609
            export_for_deployment, mode)
610

611
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
612 613
        """

1
123malin 已提交
614
        saves all persistable tensors from :code:`main_program` to
615 616
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
617 618
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
619 620 621
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
622
            executor(Executor): The executor to run for saving persistable tensors.
623 624 625 626 627
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
628
            main_program(Program, optional): The program whose persistbale tensors will
629 630 631 632 633 634 635 636 637 638
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
639 640
                import paddle
                paddle.enable_static()
641 642 643 644 645 646 647
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
648 649
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
650 651 652

        """

653 654
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
655

656 657 658
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

659
    def distributed_optimizer(self, optimizer, strategy=None):
660
        """
661 662 663 664 665 666 667
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
668 669 670 671 672
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
673

674
        Returns:
675
            Fleet: instance of fleet.
676 677

        Examples:
678

679
            .. code-block:: python
680

1
123malin 已提交
681
                import paddle
682
                import paddle.distributed.fleet as fleet
1
123malin 已提交
683
                fleet.init(is_collective=True)
684 685 686 687
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

688 689
        """
        self.user_defined_optimizer = optimizer
690

691
        if strategy is not None:
T
tangwei12 已提交
692 693 694 695 696 697 698
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
699
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
700 701

        self._context = {}
S
ShenLiang 已提交
702 703

        if paddle.fluid.framework.in_dygraph_mode():
704 705 706 707 708
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
709 710
        return self

711
    @dygraph_only
712
    def distributed_model(self, model):
713
        """
714 715 716 717 718 719 720
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
721 722

        Examples:
723

724 725
            .. code-block:: python

726 727 728 729 730 731 732 733 734
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
735

736 737
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
738

1
123malin 已提交
739
                # 1. initialize fleet environment
740 741
                fleet.init(is_collective=True)

1
123malin 已提交
742
                # 2. create layer & optimizer
743 744 745 746 747
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
748
                # 3. get data_parallel model using fleet
749 750 751
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
752
                # 4. run layer
753 754 755 756 757 758 759 760 761 762 763 764
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

765

766
        """
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
        if self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
        elif self._hcg.get_parallel_mode() == ParallelMode.MODEL_PARALLEL:
            distributed_model = ModelParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
        return distributed_model
783 784 785 786 787

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
788
        (Only work in dygraph mode)
789 790 791 792 793 794 795

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

796 797 798 799 800
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
801

802
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
803
                a = paddle.to_tensor(value)
804

805 806
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
807

808 809 810
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
811 812 813 814 815 816 817 818
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
819
        (Only work in dygraph mode)
820 821 822 823

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

824 825
        Returns:
            None
826 827 828 829

        Examples:
            .. code-block:: python

830 831 832
                import numpy as np
                import paddle
                from paddle.distributed import fleet
833

834 835 836
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
837
                a = paddle.to_tensor(value)
838

839 840
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
841

842 843 844
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
845 846 847
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
848 849 850 851 852 853 854 855
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
856
        (Only work in dygraph mode)
857

858 859 860
        Args:
            value (float|Tensor): the value of learning rate

861 862
        Returns: 
            None 
863 864 865 866

        Examples:
            .. code-block:: python

867 868 869
                import numpy as np
                import paddle
                from paddle.distributed import fleet
870

871
                fleet.init(is_collective=True)
872

873
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
874
                a = paddle.to_tensor(value)
875

876 877
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
893 894 895 896 897 898 899 900
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
901
        (Only work in dygraph mode)
902 903 904 905 906

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
907

908 909
            .. code-block:: python

910 911 912 913 914
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
915

916
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
917
                a = paddle.to_tensor(value)
918

919 920
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
921

922 923
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
924

925 926
                lr = adam.get_lr()
                print(lr) # 0.01
927 928 929 930 931 932 933 934
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
935
        (Only work in dygraph mode)
936

937 938
        Returns:
            None
939 940

        Examples:
1
123malin 已提交
941

942 943
            .. code-block:: python

944 945 946
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
947

948 949 950 951 952
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
953

954 955
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
956

1
123malin 已提交
957
                # 1. initialize fleet environment
958 959
                fleet.init(is_collective=True)

1
123malin 已提交
960
                # 2. create layer & optimizer
961 962 963 964 965
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
966
                # 3. get data_parallel model using fleet
967 968 969
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
970
                # 4. run layer
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
991 992
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
993

994 995
        Returns: 
            None
996 997

        Examples:
1
123malin 已提交
998

999 1000
            .. code-block:: python

1001 1002 1003
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1004

1005 1006 1007 1008 1009
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1010

1011 1012
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1013

1
123malin 已提交
1014
                # 1. initialize fleet environment
1015 1016
                fleet.init(is_collective=True)

1
123malin 已提交
1017
                # 2. create layer & optimizer
1018 1019 1020 1021 1022
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1023
                # 3. get data_parallel model using fleet
1024 1025 1026
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1027
                # 4. run layer
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

H
huangxu96 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1104

H
huangxu96 已提交
1105
        # imitate target optimizer retrieval
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."

        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1120

D
Dong Daxiang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1148 1149 1150 1151 1152 1153 1154 1155 1156
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1157
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1158 1159 1160
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1161
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1162 1163
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1164
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1165 1166 1167 1168
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1169
            by minimize and a list of (param, grad) tensor pairs, param is
1170
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1171 1172
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1173 1174 1175
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1176

1177
            .. code-block:: python
1178

1179
                import paddle
1
123malin 已提交
1180
                paddle.enable_static()
1181
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1193

1
123malin 已提交
1194
                fleet.init(is_collective=True)
1195 1196 1197 1198
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1199

1200
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1201 1202

        """
D
Dong Daxiang 已提交
1203 1204 1205
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1206 1207 1208
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1209
            self._context = context
1210 1211
            return target_opt.minimize(loss)

1212 1213
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1214 1215
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1216 1217
        if startup_program == None:
            self.origin_startup_program = \
1218 1219
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1220 1221 1222
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1223

1224 1225
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1226 1227 1228 1229 1230

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1231

D
Dong Daxiang 已提交
1232 1233 1234
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1235 1236 1237 1238 1239 1240

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1241
        if copy_user_defined_strategy._is_strict_auto():
1242 1243
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1244
                opt._enable_strategy(copy_user_defined_strategy, context)
1245

1246 1247
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1248
        can_not_apply_optimizer_list = []
1249 1250 1251 1252
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1253
                                copy_user_defined_strategy)
1254 1255
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1256
            elif opt._can_apply() and opt._is_graph_out():
1257
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1258 1259
            else:
                can_not_apply_optimizer_list.append(opt)
1260
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1261
        meta_optimizer, graph_optimizer = \
1262 1263
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1264
                copy_user_defined_strategy, valid_optimizer_list,
1265
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1266

D
Dong Daxiang 已提交
1267
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1268 1269 1270
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1271

1272 1273 1274 1275 1276 1277
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1278
        self._context = context
1279

D
Dong Daxiang 已提交
1280
        self.valid_strategy = valid_strategy
1281
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1282

1283 1284
        optimize_ops = []
        params_grads = []
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1295
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1296

1297 1298
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1299
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1300

1301
            default_program = paddle.static.default_main_program()
1302 1303 1304 1305

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1306 1307
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1308
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1309

1310 1311
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1312

1313
        if graph_optimizer:
D
Dong Daxiang 已提交
1314
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1315
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1316 1317 1318 1319
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1320 1321 1322
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1323
        if self._runtime_handle is None:
1324
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1325

1326 1327
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1328 1329

        return optimize_ops, params_grads