nn.py 116.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..dygraph import dygraph_utils
M
minqiyang 已提交
21
from . import layers
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
25 26
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
27
import numpy as np
28
import numbers
29
import logging
30

31
__all__ = [
32 33 34
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
35
]
M
minqiyang 已提交
36 37


X
Xin Pan 已提交
38
class Conv2D(layers.Layer):
39
    """
40 41
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
42 43 44
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
45 46 47
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
48
    and W is the width of the filter. If the groups is greater than 1,
49
    C will equal the number of input feature map divided by the groups.
50
    Please refer to UFLDL's `convolution
51
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
52 53 54 55 56 57 58 59 60
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

61
        Out = \\sigma (W \\ast X + b)
62 63 64

    Where:

65 66
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
67
    * :math:`\\ast`: Convolution operation.
68
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

91
    Parameters:
92
        num_channels(int): The number of channels in the input image.
93
        num_filters(int): The number of filter. It is as same as the output
94 95
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
96 97
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
98
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
99
            contain two integers, (stride_H, stride_W). Otherwise, the
100 101
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
102
            contain two integers, (padding_H, padding_W). Otherwise, the
103 104
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
105
            contain two integers, (dilation_H, dilation_W). Otherwise, the
106 107
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
108 109 110
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
111 112
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
113 114 115 116
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
117
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
118 119 120 121
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
122 123 124 125 126
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
127

128 129 130 131
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
132

133 134 135
    Returns:
        None
    
136
    Raises:
137
        ValueError: if ``use_cudnn`` is not a bool value.
138 139 140

    Examples:
        .. code-block:: python
L
lujun 已提交
141

142 143 144 145 146
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

147
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
148
          with fluid.dygraph.guard():
149
              conv2d = Conv2D(3, 2, 3)
150 151
              data = to_variable(data)
              conv = conv2d(data)
152 153 154

    """

M
minqiyang 已提交
155
    def __init__(self,
156
                 num_channels,
M
minqiyang 已提交
157 158 159 160 161 162 163 164
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
165 166 167
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
168
        assert param_attr is not False, "param_attr should not be False here."
169 170
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
171 172 173 174
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
175
        self._act = act
M
minqiyang 已提交
176 177 178
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
179 180 181 182 183
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
184 185 186 187 188 189 190 191 192

        # TODO: recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17098
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        #     self._l_type = 'conv2d'
        self._l_type = 'conv2d'
M
minqiyang 已提交
193

194
        self._num_channels = num_channels
195 196
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
197
        else:
198
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
199
                raise ValueError("num_channels must be divisible by groups.")
200 201
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
202
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
203 204

        def _get_default_param_initializer():
205 206
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
207 208 209
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

210
        self.weight = self.create_parameter(
211
            attr=self._param_attr,
M
minqiyang 已提交
212 213 214 215
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

216
        self.bias = self.create_parameter(
217 218
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
219 220
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
221 222

    def forward(self, input):
223 224
        inputs = {
            'Input': [input],
225
            'Filter': [self.weight],
226 227 228 229 230 231 232 233 234 235 236 237 238 239
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }

        if in_dygraph_mode():
            outs = core.ops.conv2d(inputs, attrs)
            pre_bias = outs['Output'][0]

240 241
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
242 243 244 245

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

M
minqiyang 已提交
246 247 248
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
249 250 251 252
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
253
                'Filter': self.weight,
M
minqiyang 已提交
254
            },
M
minqiyang 已提交
255
            outputs={"Output": pre_bias},
256
            attrs=attrs)
M
minqiyang 已提交
257

258
        if self.bias is not None:
259 260 261 262 263
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
264
                        'Y': [self.bias]},
265 266 267 268
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
269

L
lujun 已提交
270
        # Currently, we don't support inplace in dygraph mode
271
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
272 273


L
lujun 已提交
274
class Conv3D(layers.Layer):
275 276 277 278 279
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
280 281
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
282 283 284 285 286 287 288 289 290 291 292 293 294 295
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
296
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

322
    Parameters:
323
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
324
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
325
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
326
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
327 328 329
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
330
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
331 332
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
333
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
334 335
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
336
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
337 338
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
339 340 341
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
342 343
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
344 345 346
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
347 348
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
349 350 351
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
352 353 354 355 356
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
357
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
358

D
DuYao 已提交
359 360 361 362
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
363

364
    Returns:
D
DuYao 已提交
365
        None.
366 367 368 369 370 371 372 373

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

374 375 376 377 378 379
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
380
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
381 382
              ret = conv3d(fluid.dygraph.base.to_variable(data))

383 384
    """

L
lujun 已提交
385
    def __init__(self,
386
                 num_channels,
L
lujun 已提交
387 388 389 390 391 392 393 394 395
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
396 397
                 act=None,
                 dtype='float32'):
L
lujun 已提交
398
        assert param_attr is not False, "param_attr should not be False here."
399 400
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
401 402 403
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
404
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
405 406
        self._act = act
        self._use_cudnn = use_cudnn
407 408 409 410
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
411
        self._dtype = dtype
412 413

        if self._groups is None:
414
            num_filter_channels = self._num_channels
L
lujun 已提交
415
        else:
416
            if self._num_channels % self._groups != 0:
L
lujun 已提交
417
                raise ValueError("num_channels must be divisible by groups.")
418
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
419

420 421
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
422 423 424

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
425
                2] * self._num_channels
L
lujun 已提交
426 427 428
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

429
        self.weight = self.create_parameter(
430
            attr=self._param_attr,
L
lujun 已提交
431 432 433 434
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

435
        self.bias = self.create_parameter(
436 437
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
438 439 440 441 442 443 444 445
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
446
            type='conv3d',
L
lujun 已提交
447 448
            inputs={
                'Input': input,
449
                'Filter': self.weight,
L
lujun 已提交
450 451 452 453 454 455 456 457 458 459 460
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

461
        if self.bias is not None:
462 463 464 465 466
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
467
                        'Y': [self.bias]},
468 469 470 471
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
472 473 474 475 476

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
542

543
    Parameters:
544
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
545 546
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
547
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
548
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
549
            Otherwise, the filter will be a square.
D
DuYao 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
565
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
566 567
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
568 569 570 571
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
572 573
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
574 575
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
576 577
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
578 579 580
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
581 582 583 584 585 586 587
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
588

D
DuYao 已提交
589 590 591 592
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
593

L
lujun 已提交
594
    Returns:
D
DuYao 已提交
595
        None.
L
lujun 已提交
596 597 598 599 600 601 602 603

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

604 605 606 607 608 609
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
610
                    num_channels=3,
611 612 613 614 615
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
616 617
    """

L
lujun 已提交
618
    def __init__(self,
619
                 num_channels,
L
lujun 已提交
620
                 num_filters,
621
                 filter_size,
L
lujun 已提交
622 623 624 625 626 627 628 629
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
630 631
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
632 633 634 635 636 637 638
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
639
        self._num_channels = num_channels
L
lujun 已提交
640 641 642 643 644 645
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
646
        self._dtype = dtype
L
lujun 已提交
647

648 649
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
650

651 652
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
653
        self.weight = self.create_parameter(
L
lujun 已提交
654 655
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
656
            self.bias = self.create_parameter(
L
lujun 已提交
657 658 659 660 661 662 663 664 665 666 667
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
668
                    'Filter': [self.weight]},
L
lujun 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
684
                        'Y': [self.bias]},
L
lujun 已提交
685 686 687 688 689 690 691 692 693
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
694
class Pool2D(layers.Layer):
695
    """
696 697 698 699 700
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
701 702
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

748
    Parameters:
749
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
750
            it must contain two integers, (pool_size_Height, pool_size_Width).
751 752 753 754
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
755
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
756 757 758
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
759
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
760 761 762 763 764 765 766
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
767 768

    Returns:
769
        None
770 771 772 773 774 775 776 777 778 779

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
780
          import paddle.fluid as fluid
781 782
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
783 784

          with fluid.dygraph.guard():
785
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
786
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
787 788 789
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
790
             pool2d_res = pool2d(to_variable(data))
791 792 793

    """

M
minqiyang 已提交
794 795 796 797 798 799 800 801
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
802
                 exclusive=True):
M
minqiyang 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

816
        super(Pool2D, self).__init__()
M
minqiyang 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

        if in_dygraph_mode():
            outs = core.ops.pool2d(inputs, attrs)
            return outs['Out'][0]

M
minqiyang 已提交
847 848
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
849 850 851
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
852
            outputs={"Out": pool_out},
853
            attrs=attrs)
M
minqiyang 已提交
854
        return pool_out
M
minqiyang 已提交
855 856


S
songyouwei 已提交
857 858 859 860 861 862 863 864 865 866
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

867
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}

        if in_dygraph_mode():
            outs = core.ops.matmul(inputs, attrs)
            pre_bias = outs['Out'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

S
songyouwei 已提交
944 945
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
946
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
961
class BatchNorm(layers.Layer):
962
    """
963 964 965 966 967
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
968 969 970 971
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

972 973 974
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
975 976 977 978 979 980 981 982

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

983 984
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
985 986 987

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
988 989 990 991 992 993
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
994

995 996
    The normalization function formula is as follows:
 
997 998 999
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1000 1001 1002 1003 1004 1005
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1006

1007
    Parameters:
1008 1009 1010 1011 1012 1013
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1014 1015 1016
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1017
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1018 1019 1020
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1021 1022 1023 1024 1025 1026
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1027 1028
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1029
        use_global_stats(bool, optional): Whether to use global mean and
1030 1031 1032
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1033 1034 1035 1036
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1037 1038

    Returns:
1039
        None
1040 1041 1042

    Examples:
        .. code-block:: python
L
lujun 已提交
1043 1044

          import paddle.fluid as fluid
1045 1046
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1047

1048
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1049
          with fluid.dygraph.guard():
1050
              x = to_variable(x)
1051
              batch_norm = fluid.BatchNorm(10)
1052
              hidden1 = batch_norm(x)
1053 1054
    """

M
minqiyang 已提交
1055 1056 1057 1058 1059 1060 1061 1062
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1063
                 dtype='float32',
M
minqiyang 已提交
1064 1065 1066 1067
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1068
                 do_model_average_for_mean_and_var=True,
1069 1070
                 use_global_stats=False,
                 trainable_statistics=False):
1071
        super(BatchNorm, self).__init__()
1072
        self._param_attr = param_attr
1073
        self._bias_attr = bias_attr
1074
        self._act = act
M
minqiyang 已提交
1075 1076 1077

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1078 1079
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1080 1081 1082 1083 1084 1085
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1086
        self.weight = self.create_parameter(
1087
            attr=self._param_attr,
M
minqiyang 已提交
1088 1089 1090
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1091
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1092

1093
        self.bias = self.create_parameter(
1094
            attr=self._bias_attr,
M
minqiyang 已提交
1095 1096 1097
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1098
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1099

1100
        self._mean = self.create_parameter(
M
minqiyang 已提交
1101 1102 1103 1104 1105 1106 1107
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1108
        self._mean.stop_gradient = True
M
minqiyang 已提交
1109

1110
        self._variance = self.create_parameter(
M
minqiyang 已提交
1111 1112 1113 1114 1115 1116 1117
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1118
        self._variance.stop_gradient = True
M
minqiyang 已提交
1119 1120

        self._in_place = in_place
1121
        self._data_layout = data_layout
M
minqiyang 已提交
1122 1123 1124
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1125
        self._fuse_with_relu = False
M
minqiyang 已提交
1126
        self._use_global_stats = use_global_stats
1127
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1128 1129 1130 1131 1132 1133

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
1134

M
minqiyang 已提交
1135
        variance_out = self._variance
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics
        }
M
minqiyang 已提交
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        if in_dygraph_mode():
            attrs['is_test'] = not _dygraph_tracer()._train_mode
            saved_mean = _varbase_creator(dtype=self._dtype)
            saved_variance = _varbase_creator(dtype=self._dtype)
            batch_norm_out = _varbase_creator(dtype=self._dtype)
            batch_norm_out.stop_gradient = False
            # inplace is not supported currently
        else:
            saved_mean = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            saved_variance = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
                self._dtype)

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        if in_dygraph_mode():
            outs = core.ops.batch_norm(inputs, attrs, outputs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)
M
minqiyang 已提交
1182 1183

        self._helper.append_op(
1184
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1185

L
lujun 已提交
1186
        # Currently, we don't support inplace in dygraph mode
1187
        return self._helper.append_activation(batch_norm_out, self._act)
1188 1189


1190 1191 1192 1193
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1194 1195 1196 1197 1198 1199
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1200 1201
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1202

1203
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1204 1205 1206 1207 1208 1209 1210
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1211 1212
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1226

1227
    Parameters:
L
lujun 已提交
1228 1229
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1252

Z
zhongpu 已提交
1253 1254
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1255

1256
    Returns:
Z
zhongpu 已提交
1257
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1258 1259

    Examples:
1260

1261 1262
        .. code-block:: python

L
lujun 已提交
1263 1264 1265 1266
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1267
          # example 1
1268 1269
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1270 1271
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1272
              emb = fluid.dygraph.Embedding(
1273 1274 1275
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1276
              static_rlt3 = emb(base.to_variable(inp_word))
1277
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1292 1293
    """

1294 1295 1296 1297 1298 1299 1300
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1301
        super(Embedding, self).__init__()
1302 1303 1304 1305
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1306
            size[0] + padding_idx)
1307 1308 1309

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1310
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1311 1312 1313
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1314
        self.weight = self.create_parameter(
1315 1316 1317 1318 1319 1320
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1321 1322 1323 1324 1325 1326
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1327

1328
        if in_dygraph_mode():
1329
            inputs = {'Ids': [input], 'W': [self.weight]}
1330 1331 1332
            outs = core.ops.lookup_table_v2(inputs, attrs)
            return outs['Out'][0]

1333 1334
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1335
            type='lookup_table_v2',
1336
            inputs={'Ids': input,
1337
                    'W': self.weight},
1338
            outputs={'Out': out},
1339
            attrs=attrs)
1340 1341

        return out
M
minqiyang 已提交
1342 1343


1344
class LayerNorm(layers.Layer):
1345
    """
1346 1347 1348
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1349
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1350

1351
    The formula is as follows:
1352

1353
    ..  math::
1354

1355
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1356

1357
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1358

1359
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1360

1361 1362 1363 1364 1365
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1366

1367
    Parameters:
1368 1369 1370 1371
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1372
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1373
            normalization. Default: True.
1374
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1375
            normalization. Default: True.
1376
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1377
            division by zero. Default: 1e-05.
1378
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1379 1380 1381
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1382
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1383
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1384 1385 1386
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1387
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1388
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1389
                  Default: None.
1390 1391
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1392
    Returns:
1393
        None
1394

1395
    Examples:
1396

1397 1398 1399
        .. code-block:: python

          import paddle.fluid as fluid
1400
          from paddle.fluid.dygraph.base import to_variable
1401 1402
          import numpy

1403
          x = numpy.random.random((3, 32, 32)).astype('float32')
1404
          with fluid.dygraph.guard():
1405
              x = to_variable(x)
1406
              layerNorm = fluid.LayerNorm([32, 32])
1407
              ret = layerNorm(x)
1408

1409
    """
1410

1411
    def __init__(self,
1412
                 normalized_shape,
1413 1414 1415 1416 1417
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1418 1419 1420 1421 1422
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1423

1424
        self._normalized_shape = list(normalized_shape)
1425 1426 1427 1428 1429 1430
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1431 1432
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1433
        if self._scale:
1434
            self.weight = self.create_parameter(
1435 1436 1437 1438
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1439 1440 1441 1442
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1443 1444
        if self._shift:
            assert self._bias_attr is not False
1445
            self.bias = self.create_parameter(
1446 1447 1448 1449
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1450 1451 1452
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1453 1454

    def forward(self, input):
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1466
        inputs = dict()
1467
        inputs['X'] = [input]
1468
        if self._scale:
1469
            inputs['Scale'] = [self.weight]
1470
        if self._shift:
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
            inputs['Bias'] = [self.bias]

        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

        if in_dygraph_mode():
            outs = core.ops.layer_norm(inputs, attrs)
            pre_act = outs['Y'][0]
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1505
        return self._helper.append_activation(layer_norm_out, act=self._act)
1506 1507


M
minqiyang 已提交
1508 1509 1510
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1511 1512 1513 1514 1515
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1526
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1552
    Parameters:
L
lujun 已提交
1553
        size (int): The input dimension value.
D
DuYao 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1563 1564 1565 1566


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1567 1568 1569 1570
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1571 1572 1573 1574 1575
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1576
            is initialized zero. The default value is None.
L
lujun 已提交
1577
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1578
                             The default value is 'tanh'.
L
lujun 已提交
1579
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1580 1581 1582
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1583

D
DuYao 已提交
1584 1585 1586 1587
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1588

M
minqiyang 已提交
1589
    Returns:
D
DuYao 已提交
1590 1591 1592 1593
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1607
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1608 1609 1610
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1611
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1612 1613 1614
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1625
        super(GRUUnit, self).__init__()
1626
        self._bias_attr = bias_attr
M
minqiyang 已提交
1627 1628 1629 1630 1631
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1632 1633
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1634

M
minqiyang 已提交
1635
        self._dtype = dtype
M
minqiyang 已提交
1636 1637
        size = size // 3
        # create weight
1638
        self.weight = self.create_parameter(
M
minqiyang 已提交
1639
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1640 1641

        # create bias
M
minqiyang 已提交
1642
        bias_size = [1, 3 * size]
1643
        self._bias_size = bias_size
1644
        self.bias = self.create_parameter(
M
minqiyang 已提交
1645
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1646

M
minqiyang 已提交
1647
    def forward(self, input, hidden):
1648 1649 1650 1651 1652
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1653
        if self.bias:
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }

        if in_dygraph_mode():
            outs = core.ops.gru_unit(inputs, attrs)
            return outs['Hidden'][0], outs['ResetHiddenPrev'][0], outs['Gate'][
                0]
M
minqiyang 已提交
1664 1665 1666 1667 1668 1669

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1679 1680
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1681 1682 1683
            })

        return updated_hidden, reset_hidden_pre, gate
1684 1685 1686 1687


class NCE(layers.Layer):
    """
1688 1689 1690 1691 1692
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1693
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1694

1695
    Parameters:
1696 1697
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1698
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1699 1700 1701
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1702
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1703 1704 1705 1706
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1707 1708
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1709 1710
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1711
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1712
                       It is used when sampler is set to 'custom_dist'.
1713
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1714
                       Default: None.
1715 1716
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1717
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1718

1719 1720
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1721

1722 1723
        **bias** (Parameter or None): the learnable bias of this layer.
    
1724
    Returns:
1725
        None
1726 1727 1728 1729

    Examples:
        .. code-block:: python

1730 1731 1732
            import numpy as np
            import paddle.fluid as fluid

1733
            window_size = 5
1734 1735
            dict_size = 20
            label_word = int(window_size // 2) + 1
1736
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1758
                nce = fluid.NCE(
1759
                             num_total_classes=dict_size,
1760
                             dim=embs3.shape[1],
1761 1762 1763 1764 1765 1766 1767
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1768 1769
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1770 1771 1772 1773 1774

    """

    def __init__(self,
                 num_total_classes,
1775
                 dim,
1776
                 sample_weight=None,
1777 1778 1779 1780 1781 1782
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1783 1784 1785
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1786 1787 1788
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1789
        self._dtype = dtype
1790
        self._inputs = dict()
1791
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1879
        self.weight = self.create_parameter(
1880 1881 1882
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1883
            dtype=self._dtype)
1884
        if self._bias_attr:
1885
            self.bias = self.create_parameter(
1886 1887 1888
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1889
                dtype=self._dtype)
1890 1891
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
1922 1923 1924 1925
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1926 1927 1928 1929 1930
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1931
    Parameters:
L
lujun 已提交
1932
        mode (str): The mode for weight sharing. It supports all, channel
1933 1934 1935
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1936 1937 1938
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1939
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1940 1941
          This argument is required when mode is "element".
          Default: None.
1942 1943
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1944
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1945

1946 1947 1948
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
1949
    Returns:
1950
        None
1951 1952 1953 1954 1955

    Examples:

        .. code-block:: python

L
lujun 已提交
1956
          import paddle.fluid as fluid
1957
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1958 1959 1960 1961
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1962
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1974
                 input_shape=inp_np.shape,
L
lujun 已提交
1975
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1976
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1977

1978 1979
    """

S
songyouwei 已提交
1980 1981 1982 1983 1984
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
1985
                 dtype='float32'):
1986 1987
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
1988 1989
        self._mode = mode
        self._param_attr = param_attr
1990
        self._dtype = dtype
S
songyouwei 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2005
        self.weight = self.create_parameter(
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2017
                    'Alpha': self.weight},
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2038
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2039

2040
    Parameters:
2041 2042 2043 2044 2045
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2046 2047 2048 2049
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2050
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2051
           If it is set to None, the bias is initialized zero. The default value is None.
2052
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2053

D
DuYao 已提交
2054 2055 2056 2057
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2058

2059 2060 2061 2062 2063 2064
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2065 2066 2067 2068 2069 2070 2071
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2072
                    input1_dim=5, input2_dim=4, output_dim=1000)
2073 2074
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2075 2076 2077
    """

    def __init__(self,
2078 2079 2080
                 input1_dim,
                 input2_dim,
                 output_dim,
2081 2082 2083
                 name=None,
                 act=None,
                 param_attr=None,
2084 2085 2086
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2087 2088 2089 2090
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2091 2092 2093
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2094
        self._inputs = dict()
2095
        self._dtype = dtype
2096

2097
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2098
        self.weight = self.create_parameter(
2099 2100 2101 2102
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2103
        bias_size = [1, self._output_dim]
2104
        self.bias = self.create_parameter(
2105 2106 2107 2108
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2109 2110

    def forward(self, x, y):
2111 2112 2113
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
        if self.bias:
            self._inputs["Bias"] = self.bias
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2128
        return self._helper.append_activation(out, act=self._act)
2129 2130 2131 2132


class Conv2DTranspose(layers.Layer):
    """
2133 2134
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2135
    The convolution2D transpose layer calculates the output based on the input,
2136 2137 2138
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2139 2140
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2141 2142
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2143 2144 2145
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2146 2147
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2148 2149 2150 2151 2152 2153 2154 2155 2156

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2157 2158
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2159
    * :math:`\\ast`: Convolution operation.
2160
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2185
    Parameters:
2186
        num_channels(int): The number of channels in the input image.
2187
        num_filters(int): The number of the filter. It is as same as the output
2188
            feature map.
2189 2190 2191
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2192
        output_size(int or tuple, optional): The output image size. If output size is a
2193 2194 2195
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2196
            should follow the formula above. Default: None.
2197
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2198
            contain two integers, (padding_H, padding_W). Otherwise, the
2199 2200
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2201
            contain two integers, (stride_H, stride_W). Otherwise, the
2202 2203
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2204
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2205 2206
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2207 2208 2209 2210
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2211 2212
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2213 2214 2215
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2216
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2217 2218 2219 2220
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2221
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2222
            library is installed. Default: True.
2223
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2224
            Default: None.
2225
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2226

2227 2228
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2229

2230
        **bias** (Parameter or None): the learnable bias of this layer.
2231

2232 2233
    Returns:
        None
2234 2235 2236 2237

    Examples:
       .. code-block:: python

2238
          import paddle.fluid as fluid
2239
          import numpy as np
2240 2241

          with fluid.dygraph.guard():
2242
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2243
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2244
                    num_channels=32, num_filters=2, filter_size=3)
2245 2246
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2247 2248 2249
    """

    def __init__(self,
2250
                 num_channels,
2251
                 num_filters,
2252
                 filter_size,
2253 2254 2255 2256 2257 2258 2259 2260
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2261 2262 2263
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2264 2265 2266
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2267
        self._act = act
2268
        self._groups = groups
2269
        self._num_channels = num_channels
2270 2271 2272 2273 2274 2275 2276
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2277
        self._dtype = dtype
2278

2279 2280 2281
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2282
            self._op_type = 'depthwise_conv2d_transpose'
2283 2284
        else:
            self._op_type = 'conv2d_transpose'
2285 2286 2287 2288 2289

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2290 2291
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2303
        filter_shape = [self._num_channels, self._num_filters // self._groups
2304 2305
                        ] + self._filter_size

2306
        self.weight = self.create_parameter(
2307
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2308

2309
        self.bias = self.create_parameter(
2310 2311 2312 2313 2314
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2315
    def forward(self, input):
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            outs = op(inputs, attrs)
            pre_bias = outs['Output'][0]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2335 2336 2337 2338
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2339
            inputs=inputs,
2340
            outputs={'Output': pre_bias},
2341
            attrs=attrs)
2342

2343
        if self.bias is not None:
2344 2345 2346 2347 2348
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2349
                        'Y': [self.bias]},
2350 2351 2352 2353 2354 2355
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2356 2357 2358 2359 2360 2361 2362 2363 2364
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2365
    Parameters:
L
lujun 已提交
2366
        name_scope(str): The name of this class.
2367
        num_filters (int): number of filters.
L
lujun 已提交
2368 2369 2370
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2383 2384 2385 2386
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2400
        assert not in_dygraph_mode(
2401
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2402 2403 2404 2405 2406 2407 2408
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2409
        self._act = act
2410

2411
    def _build_once(self, input):
2412 2413
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2414
        self.weight = self.create_parameter(
2415
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2416

2417
        self.bias = self.create_parameter(
2418 2419 2420 2421 2422
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2423 2424 2425 2426 2427 2428
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2429
                'Filter': [self.weight],
2430 2431 2432 2433 2434 2435 2436
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2437

2438
        if self.bias is not None:
2439 2440 2441 2442 2443
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2444
                        'Y': [self.bias]},
2445 2446 2447 2448 2449 2450
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2451 2452 2453


class RowConv(layers.Layer):
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2472
    Parameters:
L
lujun 已提交
2473
        name_scope(str): The name of this class.
2474 2475 2476
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2477 2478
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2479

2480 2481 2482
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2483
    Returns:
L
lujun 已提交
2484 2485
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2501 2502 2503 2504 2505
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2506
        assert not in_dygraph_mode(
2507
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2508 2509 2510 2511 2512
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2513
    def _build_once(self, input):
L
lujun 已提交
2514 2515
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2516
        self.weight = self.create_parameter(
2517 2518 2519 2520
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2521 2522 2523 2524 2525 2526

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2527
                    'Filter': [self.weight]},
L
lujun 已提交
2528 2529 2530 2531 2532 2533
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2534 2535 2536 2537 2538 2539
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2540
        channels(int): The number of channels of input.
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2564
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2565
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2566 2567 2568 2569

    """

    def __init__(self,
2570
                 channels,
L
lujun 已提交
2571 2572 2573 2574 2575
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2576 2577 2578
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2579 2580 2581
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2582
        self._channels = channels
L
lujun 已提交
2583 2584
        self._groups = groups
        self._act = act
2585
        self._dtype = dtype
L
lujun 已提交
2586 2587 2588
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2589
        param_shape = [self._channels]
L
lujun 已提交
2590

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2602 2603 2604

    def forward(self, input):
        inputs = {'X': input}
2605 2606 2607 2608
        if self.bias:
            inputs['Bias'] = self.bias
        if self.weight:
            inputs['Scale'] = self.weight
L
lujun 已提交
2609 2610

        # create output
2611
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2633
    """
2634 2635
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2667
    Parameters:
2668
        weight_shape(list or tuple): The shape of weight parameter.
2669 2670 2671 2672
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2673
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2674 2675

    Returns:
2676
        None
2677 2678 2679 2680 2681

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2682
            import numpy as np
2683 2684

            with fluid.dygraph.guard():
2685 2686 2687
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2688 2689 2690

    """

2691 2692 2693 2694 2695 2696 2697
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2698 2699 2700
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2701
        self._dtype = dtype
L
lujun 已提交
2702

2703 2704 2705
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2706

2707
        self.weight_u = self.create_parameter(
L
lujun 已提交
2708 2709 2710 2711
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2712
        self.weight_u.stop_gradient = True
L
lujun 已提交
2713

2714
        self.weight_v = self.create_parameter(
L
lujun 已提交
2715 2716 2717 2718
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2719
        self.weight_v.stop_gradient = True
L
lujun 已提交
2720 2721

    def forward(self, weight):
2722
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2738
    """
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2749
        feature_size(int): last dimension of nodes_vector.
2750 2751 2752 2753 2754 2755 2756
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2757
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2758

2759 2760
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2761

2762
        **bias** (Parameter or None): the learnable bias of this layer.
2763

2764 2765
    Returns:
        None
L
lujun 已提交
2766

2767
    Examples:
L
lujun 已提交
2768

2769
        .. code-block:: python
2770

2771 2772
          import paddle.fluid as fluid
          import numpy
2773

2774 2775 2776 2777
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2778
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2779
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2780 2781
    """

L
lujun 已提交
2782
    def __init__(self,
2783
                 feature_size,
L
lujun 已提交
2784 2785 2786 2787 2788 2789
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2790 2791 2792
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2793
        self._name = name
2794
        self._feature_size = feature_size
L
lujun 已提交
2795 2796 2797 2798 2799 2800
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2801 2802
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2803
        if self._bias_attr:
2804
            self.bias = self.create_parameter(
L
lujun 已提交
2805 2806 2807 2808
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2809
        self.weight = self.create_parameter(
L
lujun 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2827
                'Filter': self.weight
L
lujun 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2837
                        'Y': [self.bias]},
L
lujun 已提交
2838 2839 2840 2841 2842
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)