layers.py 61.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
28

C
chengduo 已提交
29
from . import parallel_helper
X
Xin Pan 已提交
30
from .. import unique_name
31
from paddle.fluid import core
32
from .layer_object_helper import LayerObjectHelper
33
from .layer_hooks import record_program_ops_pre_hook, set_op_customized_attrs_post_hook, LayerOpsRecoder
34
from .base import program_desc_tracing_guard, param_guard
35
from paddle.fluid import framework
36
from ..param_attr import ParamAttr
37
from paddle.fluid.executor import Executor, global_scope
38
from paddle.fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
39
from paddle.fluid.framework import _current_expected_place as _get_device
C
chentianyu03 已提交
40
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
41
import paddle.utils.deprecated as deprecated
42

43
__all__ = ['Layer']
44

45 46 47 48 49 50 51 52
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

53

54 55 56 57 58 59 60 61 62 63 64
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
81
class Layer(core.Layer):
82 83
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
84

85
    Parameters:
86 87
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
88 89 90
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
91
        dtype(str, optional): data type of this parameter.
92 93
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
94
                Default: "float32"
95 96 97
    
    Returns:
        None
X
Xin Pan 已提交
98
    """
X
Xin Pan 已提交
99

100
    def __init__(self, name_scope=None, dtype="float32"):
101
        self.training = True
102
        if name_scope is None:
103 104
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
105
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
106
        self._built = False
M
minqiyang 已提交
107
        self._dtype = dtype
108
        self._init_in_dynamic_mode = framework.in_dygraph_mode()
109

X
Xin Pan 已提交
110
        self._parameters = collections.OrderedDict()
111 112 113
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
114
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
115
        self._loaddict_holder = collections.OrderedDict()
116

117 118 119 120
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

121 122 123
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

124 125 126 127
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()

M
minqiyang 已提交
128
    def train(self):
129 130 131 132 133 134
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

159
        """
160 161 162 163 164
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().train_mode()
165 166 167
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
168
            layer.training = True
M
minqiyang 已提交
169 170

    def eval(self):
171 172 173 174 175 176
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

200
        """
201 202 203 204 205
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().eval_mode()
206 207 208
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
209
            layer.training = False
M
minqiyang 已提交
210

L
LielinJiang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
227

L
LielinJiang 已提交
228 229 230 231 232
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
233
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
234 235 236 237 238 239 240
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
241
        for layer in self.children():
L
LielinJiang 已提交
242 243 244 245 246 247
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
248
    def full_name(self):
249
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
250

251 252
        Returns:
            str: full name of this layer.
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
270 271 272
        """
        return self._full_name

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

290 291 292 293 294 295
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
296

297 298
                    # change the output
                    return output * 2
299

300
                linear = paddle.nn.Linear(13, 5)
301

302 303
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
304

305 306
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
307

308
                out0 = linear(in1)
309

310 311 312 313 314 315 316
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

341 342
                import paddle
                import numpy as np
343

344 345 346
                # the forward_post_hook change the input of the layer: input = input * 2
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
347

348 349 350
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
351

352
                linear = paddle.nn.Linear(13, 5)
353

354 355
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
356

357 358 359
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
360

361 362
                # remove the hook
                forward_pre_hook_handle.remove()
363

364 365 366
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
367

368 369
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
370 371 372 373 374
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

375 376
    def create_parameter(self,
                         shape,
377
                         attr=None,
378
                         dtype=None,
379 380
                         is_bias=False,
                         default_initializer=None):
381 382 383
        """Create parameters for this layer.
        
        Parameters:
384
            shape(list): Shape of the parameter.
385 386
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
387
                If set str, it can be "bool",  "float16", "float32", "float64",
388 389
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
390
            default_initializer(Initializer, optional): the default initializer for this parameter.
391
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
392
                for non-bias and bias parameter, respectively. Default: None.
393

394
        Returns:
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

416
        """
H
hong 已提交
417 418 419 420
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
421 422
                                             default_initializer)

W
wanghuancoder 已提交
423 424 425 426
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.")
427
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
428 429 430
        """

        Create Tensor for this layer.
431

432
        Parameters:
W
wanghuancoder 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
484
            dtype(str, optional): data type of this parameter.
485 486
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
487
                If set None, it will be "float32". Default: None
488

489
        Returns:
W
wanghuancoder 已提交
490
            Tensor, created Tensor.
491 492 493 494 495 496 497 498 499 500 501 502 503

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
W
wanghuancoder 已提交
504
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
505 506 507 508 509 510 511
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

512 513 514 515 516 517 518 519
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
520 521 522 523
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
524

X
polish  
Xin Pan 已提交
525
    def parameters(self, include_sublayers=True):
526
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
527

528
        Returns:
529 530 531 532 533 534 535 536 537 538
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
539
        """
540 541 542 543 544
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
545
        return ret
X
Xin Pan 已提交
546

547 548 549 550 551 552 553 554 555
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

556
                import paddle
557

558 559 560 561 562
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
563

564
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

580
                import paddle
581

582 583 584 585 586 587 588
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
589 590 591 592 593 594 595 596

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
597
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
598 599
        """Returns a list of sub layers.

600
        Parameters:
J
Jiabin Yang 已提交
601
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
602

603 604
        Returns:
            list of Layer : a list of sub layers.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
625
        """
626 627
        ret = [
            layer
J
Jiabin Yang 已提交
628
            for _, layer in self.named_sublayers(include_self=include_self)
629
        ]
X
Xin Pan 已提交
630 631
        return ret

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

647
                import paddle
648

649 650 651 652 653
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
654 655 656 657 658

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
659
            include_self=True) if include_sublayers else zip([prefix], [self])
660 661 662 663 664 665 666 667 668
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
669
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
670 671 672 673 674 675 676
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
677
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
678 679 680 681 682 683 684

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

685
                import paddle
686

687 688 689 690 691
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
692 693 694 695 696 697 698

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
699 700 701 702 703 704 705 706
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
            for p, l in layer.named_sublayers(
                    prefix=layer_prefix, include_self=True,
                    layers_set=layers_set):
                yield p, l
707

708
    def register_buffer(self, name, tensor, persistable=True):
709
        """
710
        Registers a tensor as buffer into the layer.
711

712
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
713 714 715 716 717 718 719 720 721 722
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
723
            tensor (Tensor): the tensor to be registered as buffer.
724 725 726 727 728 729 730 731 732 733
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
734
                import paddle
735

736 737 738 739 740 741 742
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
743 744 745 746 747 748 749 750 751 752 753

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
754 755 756 757
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
758 759 760 761
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
762
        elif tensor is not None and not type(tensor) == core.VarBase:
763 764
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
765
                format(type(tensor).__name__))
766
        else:
767
            self._buffers[name] = tensor
768 769 770 771 772 773 774 775 776 777 778 779 780
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

796 797 798 799 800 801 802 803 804 805
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
806
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
807 808 809 810 811 812 813

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
814
            (string, Tensor): Tuple of name and tensor
815 816 817 818 819

        Examples:
            .. code-block:: python

                import numpy as np
820
                import paddle
821

822 823 824 825
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
826

827 828 829 830 831
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
832

833
                model = paddle.nn.Sequential(fc1, fc2)
834

835 836 837
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
838 839 840 841 842

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
843
            include_self=True) if include_sublayers else zip([prefix], [self])
844 845 846 847 848 849 850 851 852
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
853
    def clear_gradients(self):
854 855 856 857 858 859 860 861 862
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

863
                import paddle
864 865
                import numpy as np

866 867 868 869 870 871 872 873 874
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
875 876

        """
X
Xin Pan 已提交
877
        for p in self.parameters():
878 879
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
880

881
    def _build_once(self, *args, **kwargs):
882 883
        pass

884
    def __call__(self, *inputs, **kwargs):
885 886 887 888
        # NOTE(Aurelius84): Why we still need param_guard here?
        # In case of ControlFlow, true_fn and false_fn will contain
        # parameters that may not trigger logic of `Operator` to create
        # them. we add this to make sure all parameters is available.
889
        with param_guard(self._parameters), param_guard(self._buffers):
890 891 892 893 894 895 896 897 898 899
            for forward_pre_hook in self._forward_pre_hooks.values():
                hook_result = forward_pre_hook(self, inputs)
                if hook_result is not None:
                    if not isinstance(hook_result, tuple):
                        hook_result = (hook_result, )
                    inputs = hook_result

            if not self._built:
                with program_desc_tracing_guard(False):
                    self._build_once(*inputs, **kwargs)
900 901 902 903 904 905

                    # TODO(liuyuhui) Only xpu broadcast parameters here. 
                    # The other device is to call _sync_params_buffers in DataParallel 
                    # to realize the parameter synchronization among multiply cards.
                    if parallel_helper._is_data_parallel_mode(
                    ) and paddle.is_compiled_with_xpu():
906 907
                        parallel_helper._broadcast_parameters(
                            self._parameters.values())
908

909 910
                self._built = True

911
            outputs = self.forward(*inputs, **kwargs)
912

913 914 915 916
            for forward_post_hook in self._forward_post_hooks.values():
                hook_result = forward_post_hook(self, inputs, outputs)
                if hook_result is not None:
                    outputs = hook_result
917

918
            return outputs
M
minqiyang 已提交
919

920
    def forward(self, *inputs, **kwargs):
921 922 923 924 925 926 927 928
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
929
        raise NotImplementedError
X
Xin Pan 已提交
930 931 932 933

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
934 935 936
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

937
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
938

939 940 941
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
942
        Returns:
943
            Layer: the sublayer passed in.
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
970
        """
971
        assert (isinstance(sublayer, core.Layer) or sublayer == None)
972

X
Xin Pan 已提交
973 974 975 976 977 978
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

979
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
980

981 982 983
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
984
        Returns:
985
            Parameter: the parameter passed in.
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1005
        """
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1024
            raise TypeError(
1025 1026 1027 1028 1029
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
1030

1031 1032 1033
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1034

1035
                parameter.set_value(self._loaddict_holder[parameter.name])
1036

1037
            self._parameters[name] = parameter
X
Xin Pan 已提交
1038 1039
        return parameter

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
            layers_hooks = self._forward_pre_hooks if is_pre_hook else self._forward_post_hooks
            candidate_hook = record_program_ops_pre_hook if is_pre_hook else set_op_customized_attrs_post_hook

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
                already_registed = (layers_hooks[last_key] == candidate_hook)

            return already_registed

        if not isinstance(attrs, dict):
            raise TypeError("attrs should be type(dict), but received {}".
                            format(type(attrs).__name__))

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
                record_program_ops_pre_hook)
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
                set_op_customized_attrs_post_hook)
            if len(self._forward_post_hooks) > 1:
                self._forward_post_hooks.move_to_end(
                    post_hook_helper._hook_id, last=False)

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1088 1089 1090 1091 1092 1093
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1094
    def __getattr__(self, name):
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1108 1109

    def __setattr__(self, name, value):
S
songyouwei 已提交
1110 1111 1112 1113 1114
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1115 1116
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1117
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1118 1119 1120 1121
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1122
            if len(self._loaddict_holder) > 0:
1123
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1124 1125 1126 1127
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1128
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1129
            params[name] = value
1130 1131 1132 1133 1134 1135
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
1136
        else:
1137 1138 1139 1140 1141 1142 1143
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1144
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1145 1146 1147 1148 1149 1150 1151 1152
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
                _buffers = self.__dict__.get('_buffers', None)
                if type(value) == core.VarBase:
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1167 1168 1169 1170 1171
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in 
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1172 1173 1174 1175 1176 1177 1178 1179 1180
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
                        if _buffers[name] is None or type(_buffers[
                                name]) == core.VarBase:
                            _buffers[name] = assign(value)
                        else:
                            assign(value, _buffers[name])
1181
                    elif value is not None:
1182 1183 1184
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
1185 1186 1187 1188
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1189 1190
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1191 1192 1193 1194 1195 1196

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1197 1198 1199
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1200 1201 1202
        else:
            object.__delattr__(self, name)

1203 1204
    def __dir__(self):
        """
W
wanghuancoder 已提交
1205
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1206 1207

        Examples:
1208 1209 1210
            .. code-block:: python
                import paddle
                import numpy as np
1211

1212 1213 1214 1215 1216
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1217
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1218 1219
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1220

1221 1222 1223 1224
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def _state_dict_impl(self,
                         destination=None,
                         include_sublayers=True,
                         structured_name_prefix="",
                         include_non_persistable_buffer=False):
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
                if buffer is not None and name not in self._non_persistable_buffer_names_set:
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + ".",
                            include_non_persistable_buffer))
                    destination = destination_temp

        for state_dict_hook in self._state_dict_hooks.values():
            hook_result = state_dict_hook(destination)
            if hook_result is not None:
                destination = hook_result

        return destination

    def to_static_state_dict(self,
                             destination=None,
                             include_sublayers=True,
                             structured_name_prefix=""):
        '''
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            
        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
            include_non_persistable_buffer=True)

H
hong 已提交
1347 1348 1349 1350
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
1351
        '''
1352
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1353

1354
        Parameters:
1355 1356
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1357
            
H
hong 已提交
1358
        Retruns:
1359
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1360 1361

        Examples:
1362 1363
            .. code-block:: python

1364
                import paddle
H
hong 已提交
1365

1366 1367 1368 1369
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1370 1371

        '''
1372 1373 1374 1375 1376
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
            include_non_persistable_buffer=False)
1377

1378
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1379
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1380
        '''
1381
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1382

1383
        Parameters:
1384 1385
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
H
hong 已提交
1386
                                                  Default: True
H
hong 已提交
1387 1388 1389 1390
        Returns:
            None

        Examples:
1391 1392
            .. code-block:: python

1393
                import paddle
1394

1395
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1396

1397
                state_dict = emb.state_dict()
1398 1399
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1400
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1401

H
hong 已提交
1402 1403
        '''

1404 1405 1406 1407 1408
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
            if (isinstance(state, dict) or isinstance(state, list)):
                if (len(state) != len(param)):
                    raise ValueError("{} receieves the length of {}, "
                                     "but the expected shape is {}".format(
                                         key, len(state), len(param)))
                else:
                    return param, state
            else:
                state_shape = state.shape() if inspect.ismethod(
                    state.shape) else state.shape

                if list(state_shape) != list(param.shape):
                    raise ValueError(
                        "{} receives a shape {}, but the expected shape is {}.".
                        format(key, list(state_shape), list(param.shape)))
                return param, state
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

        if in_dygraph_mode():
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1439

1440 1441 1442 1443 1444 1445 1446
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1447 1448 1449 1450
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    def _apply(self, func, device, dtype, blocking):
        for layer in self.children():
            layer._apply(func, device, dtype, blocking)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
                        grad_applied = func(param._grad_ivar(), device, dtype,
                                            blocking)

        for key, buf in self._buffers.items():
            self._buffers[key] = func(buf, device, dtype, blocking)

    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored. 
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the 
            index of the GPUs or XPUs. Default: None. 
            
            dtype(str|core.VarDesc.VarType|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
            
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
    

        '''

        if device is None and dtype is None and blocking is None:
            return

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
            if type(dtype) is str:
                dtype = convert_np_dtype_to_dtype_(dtype)

            # 1. gpu place need to determine whether the memory is sufficient for allocation:
            if t.place.is_gpu_place():
                # for gpu, minimum memory allocation unit is 256 bytes.
                size_dtype = core.size_of_dtype(dtype)
                # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
                gpu_memory_available = core.gpu_memory_available()
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy param / Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(),
                                        blocking)  # k-v type will error
                    # Release mem of t
                    t.value().get_tensor()._clear()
                else:
                    t_used = t
            else:
                t_used = t

            # 2. cast param / Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
            else:
                t_casted = t_used

            # 3. Copy casted cpu param / Tensor to device
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
1592
            else:
1593 1594 1595 1596 1597 1598 1599 1600
                new_t = t_casted

            # 4. share Tensor to origin param / Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t
C
chentianyu03 已提交
1601

1602 1603 1604
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            self._apply(transform, device, dtype, blocking)
C
chentianyu03 已提交
1605

1606
        self._dtype = dtype
C
chentianyu03 已提交
1607

1608 1609 1610
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict