layers.py 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
M
minqiyang 已提交
19
import collections
20
import six
21
import re
C
chengduo 已提交
22
from . import parallel_helper
X
Xin Pan 已提交
23
from .. import unique_name
24
from paddle.fluid import core
25
from .layer_object_helper import LayerObjectHelper
26
from .base import program_desc_tracing_guard, param_guard
27
from paddle.fluid import framework
28
from ..param_attr import ParamAttr
H
hong 已提交
29
import copy
30
import weakref
H
hong 已提交
31
import warnings
32

33
__all__ = ['Layer']
34

35 36 37 38 39 40 41 42
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
60
class Layer(core.Layer):
61
    """Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
62

63
    Parameters:
64 65
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
66 67 68
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
69 70 71 72 73 74 75
        dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                Default: ``core.VarDesc.VarType.FP32``
    
    Returns:
        None
X
Xin Pan 已提交
76
    """
X
Xin Pan 已提交
77

78
    def __init__(self, name_scope=None, dtype=core.VarDesc.VarType.FP32):
79
        self.training = True
80
        if name_scope is None:
81 82
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
83
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
84
        self._built = False
M
minqiyang 已提交
85
        self._dtype = dtype
86

X
Xin Pan 已提交
87 88
        self._parameters = collections.OrderedDict()
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
89
        self._loaddict_holder = collections.OrderedDict()
90

91 92 93
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
94
    def train(self):
95 96 97 98 99 100 101 102
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
103
        framework._dygraph_tracer().train_mode()
104 105 106 107
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
            layer.train()
M
minqiyang 已提交
108 109

    def eval(self):
110 111 112 113 114 115 116 117
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
118
        framework._dygraph_tracer().eval_mode()
119 120 121 122
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
            layer.eval()
M
minqiyang 已提交
123

X
Xin Pan 已提交
124
    def full_name(self):
125
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
126

127 128
        Returns:
            str: full name of this layer.
X
Xin Pan 已提交
129 130 131
        """
        return self._full_name

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
150
              import numpy as np
151 152 153 154 155 156 157 158 159 160 161 162 163 164

              # the forward_post_hook change the output of the layer: output = output * 2 
              def forward_post_hook(layer, input, output):
                  # user can use layer, input and output for information statistis tasks

                  # change the output 
                  return output * 2

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
                  
Z
zhongpu 已提交
165 166
                  value1 = np.arange(26).reshape(2, 13).astype("float32")
                  in1 = fluid.dygraph.to_variable(value1)
167
                  
Z
zhongpu 已提交
168
                  out0 = linear(in1)
169 170 171 172
                  
                  # remove the hook
                  forward_post_hook_handle.remove()

Z
zhongpu 已提交
173
                  out1 = linear(in1)
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

                  # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                  assert (out0.numpy() == (out1.numpy()) * 2).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
202
              import numpy as np
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

              # the forward_post_hook change the input of the layer: input = input * 2
              def forward_pre_hook(layer, input):
                  # user can use layer and input for information statistis tasks

                  # change the input
                  input_return = (input[0] * 2)
                  return input_return

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)

                  value0 = np.arange(26).reshape(2, 13).astype("float32")
                  in0 = fluid.dygraph.to_variable(value0)
                  out0 = linear(in0)

                  # remove the hook
                  forward_pre_hook_handle.remove()

                  value1 = value0 * 2
                  in1 = fluid.dygraph.to_variable(value1)
                  out1 = linear(in1)

                  # hook change the linear's input to input * 2, so out0 is equal to out1.
                  assert (out0.numpy() == out1.numpy()).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

236 237
    def create_parameter(self,
                         shape,
238 239
                         attr=None,
                         dtype='float32',
240 241
                         is_bias=False,
                         default_initializer=None):
242 243 244
        """Create parameters for this layer.
        
        Parameters:
245 246 247
            shape(list): Shape of the parameter.
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_fluid_ParamAttr`. Default: None.
            dtype(str or core.VarDesc.VarType or str, optional): Data type of this parameter.
248
                If set str, it can be "bool",  "float16", "float32", "float64",
249 250
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
251 252
            default_initializer(Initializer, optional): the default initializer for this parameter.
                If set None, default initializer will be set to :ref:`api_fluid_initializer_XavierInitializer` and :ref:`api_fluid_initializer_ConstantInitializer`
253
                for non-bias and bias parameter, respectively. Default: None.
254

255 256
        Returns:
            :ref:`api_guide_Variable_en` : created parameter.
257
        """
H
hong 已提交
258 259 260 261
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
262 263 264 265 266 267 268 269
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
270
        """Create Variable for this layer.
271

272 273 274 275 276 277 278 279
        Parameters:
            name(str, optional): name of the variable. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this variable persistable. Default: False
            dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                If set None, it will be ``core.VarDesc.VarType.FP32``. Default: None
            type(core.VarDesc.VarType, optional): type of the variable. No need to set this parameter. Default: ``core.VarDesc.VarType.LOD_TENSOR``
280

281 282
        Returns:
            :ref:`api_guide_Variable_en` : created Variable.
283 284 285 286 287 288 289 290 291 292
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
293
    def parameters(self, include_sublayers=True):
294
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
295

296 297
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
298

299 300
        Returns:
            list of :ref:`api_guide_Variable_en` : a list of Parameters.
X
Xin Pan 已提交
301
        """
302 303 304 305 306
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
307
        return ret
X
Xin Pan 已提交
308

X
Xin Pan 已提交
309 310 311
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

312 313
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
314

315 316
        Returns:
            list of Layer : a list of sub layers.
X
Xin Pan 已提交
317
        """
318 319 320 321 322
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
323 324
        return ret

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for name, param in model.named_parameters():
                        print(name, param)

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_sublayers():
                        print(prefix, layer)

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

X
Xin Pan 已提交
412
    def clear_gradients(self):
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    adam = fluid.optimizer.Adam(learning_rate=0.01, 
                                                parameter_list=linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    linear.clear_gradients()

        """
X
Xin Pan 已提交
437
        for p in self.parameters():
438 439
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
440

441
    def _build_once(self, *args, **kwargs):
442 443
        pass

444
    def __call__(self, *inputs, **kwargs):
445 446 447 448 449 450 451
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

X
Xin Pan 已提交
452
        if not self._built:
453 454 455 456 457
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)
                if parallel_helper._is_data_parallel_mode():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())
458
            self._built = True
459

460 461
        with param_guard(self._parameters):
            outputs = self.forward(*inputs, **kwargs)
462 463 464 465 466 467

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

M
minqiyang 已提交
468
        return outputs
M
minqiyang 已提交
469

470
    def forward(self, *inputs, **kwargs):
471 472 473 474 475 476 477 478
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
479
        raise NotImplementedError
X
Xin Pan 已提交
480 481 482 483

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
484 485 486
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

487
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
488

489 490 491
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
492
        Returns:
493
            Layer: the sublayer passed in.
X
Xin Pan 已提交
494 495
        """
        assert isinstance(sublayer, core.Layer)
496

X
Xin Pan 已提交
497 498 499 500 501 502
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

503
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
504

505 506 507
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
508
        Returns:
509
            Parameter: the parameter passed in.
X
Xin Pan 已提交
510
        """
511 512 513 514 515 516
        if parameter is None:
            self._parameters[name] = None
        elif not isinstance(parameter, framework.Parameter):
            raise TypeError(
                "parameter assignment requires Parameter or None, but got '{}'"
                .format(type(parameter).__name__))
517

H
hong 已提交
518 519 520 521 522
        if len(self._loaddict_holder) > 0:
            assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                parameter.name)

            parameter.set_value(self._loaddict_holder[parameter.name])
523 524

        self._parameters[name] = parameter
X
Xin Pan 已提交
525 526
        return parameter

X
Xin Pan 已提交
527 528 529 530 531
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
532 533
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
534 535

    def __setattr__(self, name, value):
S
songyouwei 已提交
536 537 538 539 540
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

541 542
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
543
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
544 545 546 547
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
548 549 550 551 552 553
            if len(self._loaddict_holder) > 0:
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

S
songyouwei 已提交
554
            _remove_if_exist(self.__dict__, self._sub_layers)
555
            params[name] = value
556 557 558 559 560 561
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
562
        else:
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

                _remove_if_exist(self.__dict__, self._parameters)
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
                object.__setattr__(self, name, value)
X
Xin Pan 已提交
580 581 582 583 584 585 586 587 588

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
        else:
            object.__delattr__(self, name)

H
hong 已提交
589 590 591 592
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
593
        '''
594
        Get all parameters of current layer and its sub-layers. And set all the parameters into a dict
H
hong 已提交
595

596 597 598
        Parameters:
            destination(dict, optional) : If provide, all the parameters will set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
599 600

        Retruns:
601
            dict: a dict contains all the parameters
H
hong 已提交
602 603

        Examples:
604 605
            .. code-block:: python

H
hong 已提交
606 607
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
608
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
609 610 611 612 613 614

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

615 616 617 618
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
619
                destination[structured_name_prefix + name] = data
620 621 622 623 624 625

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
626 627 628
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
629 630 631
                    destination = destination_temp
        return destination

H
hong 已提交
632 633 634 635
    def set_dict(self,
                 stat_dict,
                 include_sublayers=True,
                 use_structured_name=True):
H
hong 已提交
636
        '''
637
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
638

639 640 641
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
642 643
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key. 
                                                  Default: True
H
hong 已提交
644 645 646 647
        Returns:
            None

        Examples:
648 649
            .. code-block:: python

H
hong 已提交
650 651
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
652
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
653 654 655 656 657 658 659 660 661

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.set_dict( para_state_dict )

        '''
H
hong 已提交
662 663 664 665 666 667 668 669 670
        self.load_dict(
            stat_dict,
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)

    def load_dict(self,
                  stat_dict,
                  include_sublayers=True,
                  use_structured_name=True):
H
hong 已提交
671
        '''
672
        Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
H
hong 已提交
673 674 675

        This api will be Deprecated. Please use set_dict

676 677 678
        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
H
hong 已提交
679 680
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key.
                                                  Default: True
H
hong 已提交
681 682 683 684
        Returns:
            None

        Examples:
685 686
            .. code-block:: python

H
hong 已提交
687 688
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
689
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
690 691 692 693 694 695 696 697 698 699

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.load_dict( para_state_dict )

        '''

H
hong 已提交
700 701 702 703 704 705
        inner_state_dict = self.state_dict()

        for name, para in inner_state_dict.items():
            key_name = name if use_structured_name else para.name
            if key_name in stat_dict:
                para.set_value(stat_dict[key_name])
H
hong 已提交
706 707
            else:
                raise RuntimeError(
H
hong 已提交
708 709 710 711 712 713 714 715 716 717 718
                    "Parameter not found, Can't not find [ {} ] in stat_dict"
                    "use_structured_name is set to [{}]".format(
                        key_name, use_structured_name))
        unused_para_list = []
        for k, v in stat_dict.items():
            if k not in inner_state_dict:
                unused_para_list.append(k)
        if len(unused_para_list) > 0:
            warnings.warn(
                "Varibale [ {} ] are not used, because not included in layers state_dict".
                format(" ".join(unused_para_list)))