layers.py 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23 24
import copy
import weakref
import warnings

C
chengduo 已提交
25
from . import parallel_helper
X
Xin Pan 已提交
26
from .. import unique_name
27
from paddle.fluid import core
28
from .layer_object_helper import LayerObjectHelper
29
from .base import program_desc_tracing_guard, param_guard
30
from paddle.fluid import framework
31
from ..param_attr import ParamAttr
32

33
__all__ = ['Layer']
34

35 36 37 38 39 40 41 42
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
60
class Layer(core.Layer):
61 62 63 64 65 66
    """
    :alias_main: paddle.nn.Layer
	:alias: paddle.nn.Layer
	:old_api: paddle.fluid.dygraph.layers.Layer

    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
67

68
    Parameters:
69 70
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
71 72 73
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
74 75 76 77 78 79 80
        dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                Default: ``core.VarDesc.VarType.FP32``
    
    Returns:
        None
X
Xin Pan 已提交
81
    """
X
Xin Pan 已提交
82

83
    def __init__(self, name_scope=None, dtype=core.VarDesc.VarType.FP32):
84
        self.training = True
85
        if name_scope is None:
86 87
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
88
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
89
        self._built = False
M
minqiyang 已提交
90
        self._dtype = dtype
91

X
Xin Pan 已提交
92
        self._parameters = collections.OrderedDict()
93 94 95
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
96
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
97
        self._loaddict_holder = collections.OrderedDict()
98

99 100 101
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
102
    def train(self):
103 104 105 106 107 108 109 110
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
111
        framework._dygraph_tracer().train_mode()
112 113 114 115
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
            layer.train()
M
minqiyang 已提交
116 117

    def eval(self):
118 119 120 121 122 123 124 125
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
126
        framework._dygraph_tracer().eval_mode()
127 128 129 130
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
            layer.eval()
M
minqiyang 已提交
131

L
LielinJiang 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
              
149
              paddle.disable_static()
L
LielinJiang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
              
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
                      new_weight = paddle.fill_constant(layer.weight.shape, layer.weight.dtype, value=0.9)
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
        for layer in self.sublayers():
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
171
    def full_name(self):
172
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
173

174 175
        Returns:
            str: full name of this layer.
X
Xin Pan 已提交
176 177 178
        """
        return self._full_name

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
197
              import numpy as np
198 199 200 201 202 203 204 205 206 207 208 209 210 211

              # the forward_post_hook change the output of the layer: output = output * 2 
              def forward_post_hook(layer, input, output):
                  # user can use layer, input and output for information statistis tasks

                  # change the output 
                  return output * 2

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
                  
Z
zhongpu 已提交
212 213
                  value1 = np.arange(26).reshape(2, 13).astype("float32")
                  in1 = fluid.dygraph.to_variable(value1)
214
                  
Z
zhongpu 已提交
215
                  out0 = linear(in1)
216 217 218 219
                  
                  # remove the hook
                  forward_post_hook_handle.remove()

Z
zhongpu 已提交
220
                  out1 = linear(in1)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

                  # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                  assert (out0.numpy() == (out1.numpy()) * 2).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
249
              import numpy as np
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

              # the forward_post_hook change the input of the layer: input = input * 2
              def forward_pre_hook(layer, input):
                  # user can use layer and input for information statistis tasks

                  # change the input
                  input_return = (input[0] * 2)
                  return input_return

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)

                  value0 = np.arange(26).reshape(2, 13).astype("float32")
                  in0 = fluid.dygraph.to_variable(value0)
                  out0 = linear(in0)

                  # remove the hook
                  forward_pre_hook_handle.remove()

                  value1 = value0 * 2
                  in1 = fluid.dygraph.to_variable(value1)
                  out1 = linear(in1)

                  # hook change the linear's input to input * 2, so out0 is equal to out1.
                  assert (out0.numpy() == out1.numpy()).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

283 284
    def create_parameter(self,
                         shape,
285 286
                         attr=None,
                         dtype='float32',
287 288
                         is_bias=False,
                         default_initializer=None):
289 290 291
        """Create parameters for this layer.
        
        Parameters:
292 293 294
            shape(list): Shape of the parameter.
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_fluid_ParamAttr`. Default: None.
            dtype(str or core.VarDesc.VarType or str, optional): Data type of this parameter.
295
                If set str, it can be "bool",  "float16", "float32", "float64",
296 297
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
298 299
            default_initializer(Initializer, optional): the default initializer for this parameter.
                If set None, default initializer will be set to :ref:`api_fluid_initializer_XavierInitializer` and :ref:`api_fluid_initializer_ConstantInitializer`
300
                for non-bias and bias parameter, respectively. Default: None.
301

302 303
        Returns:
            :ref:`api_guide_Variable_en` : created parameter.
304
        """
H
hong 已提交
305 306 307 308
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
309 310 311 312 313 314 315 316
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
317
        """Create Variable for this layer.
318

319 320 321 322 323 324 325 326
        Parameters:
            name(str, optional): name of the variable. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this variable persistable. Default: False
            dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                If set None, it will be ``core.VarDesc.VarType.FP32``. Default: None
            type(core.VarDesc.VarType, optional): type of the variable. No need to set this parameter. Default: ``core.VarDesc.VarType.LOD_TENSOR``
327

328 329
        Returns:
            :ref:`api_guide_Variable_en` : created Variable.
330 331 332 333 334 335 336 337 338 339
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
340
    def parameters(self, include_sublayers=True):
341
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
342

343 344
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
345

346 347
        Returns:
            list of :ref:`api_guide_Variable_en` : a list of Parameters.
X
Xin Pan 已提交
348
        """
349 350 351 352 353
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
354
        return ret
X
Xin Pan 已提交
355

X
Xin Pan 已提交
356 357 358
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

359 360
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
361

362 363
        Returns:
            list of Layer : a list of sub layers.
X
Xin Pan 已提交
364
        """
365 366 367 368 369
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
370 371
        return ret

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for name, param in model.named_parameters():
                        print(name, param)

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_sublayers():
                        print(prefix, layer)

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    def register_buffer(self, name, variable, persistable=True):
        """
        Registers a variable as buffer into the layer.

        `buffer` is a non-parameteric variable and will not be updated by optimizer,
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
            variable (Variable): the variable to be registered as buffer.
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    linear = fluid.Linear(10, 3)
                    value = np.array([0]).astype("float32")
                    buffer = fluid.dygraph.to_variable(value)
                    linear.register_buffer("buf_name", buffer, persistable=True)
                    
                    # get the buffer by attribute.
                    print(linear.buf_name)

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError("The name of buffer can not contain \".\"")
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
        elif variable is not None and not type(variable) == core.VarBase:
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
                format(type(variable).__name__))
        else:
            self._buffers[name] = variable
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
            list of :ref:`api_guide_Variable_en` : a list of buffers.
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Variable.

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
            (string, Variable): Tuple of name and Variable

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    buffer1 = fluid.dygraph.to_variable(np.array([0]).astype("float32"))
                    # register a variable as buffer by specific `persistable`
                    fc1.register_buffer("buf_name_1", buffer1, persistable=True)

                    fc2 = fluid.Linear(3, 10)
                    buffer2 = fluid.dygraph.to_variable(np.array([1]).astype("float32"))
                    # register a buffer by assigning an attribute with Variable.
                    # The `persistable` can only be False by this way.
                    fc2.buf_name_2 = buffer2

                    model = fluid.dygraph.Sequential(fc1, fc2)

                    # get all named buffers
                    for name, buffer in model.named_buffers():
                        print(name, buffer)

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
590
    def clear_gradients(self):
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    adam = fluid.optimizer.Adam(learning_rate=0.01, 
                                                parameter_list=linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    linear.clear_gradients()

        """
X
Xin Pan 已提交
615
        for p in self.parameters():
616 617
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
618

619
    def _build_once(self, *args, **kwargs):
620 621
        pass

622
    def __call__(self, *inputs, **kwargs):
623 624 625 626 627 628 629
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

X
Xin Pan 已提交
630
        if not self._built:
631 632 633 634 635
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)
                if parallel_helper._is_data_parallel_mode():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())
636
            self._built = True
637

638
        with param_guard(self._parameters), param_guard(self._buffers):
639
            outputs = self.forward(*inputs, **kwargs)
640 641 642 643 644 645

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

M
minqiyang 已提交
646
        return outputs
M
minqiyang 已提交
647

648
    def forward(self, *inputs, **kwargs):
649 650 651 652 653 654 655 656
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
657
        raise NotImplementedError
X
Xin Pan 已提交
658 659 660 661

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
662 663 664
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

665
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
666

667 668 669
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
670
        Returns:
671
            Layer: the sublayer passed in.
X
Xin Pan 已提交
672 673
        """
        assert isinstance(sublayer, core.Layer)
674

X
Xin Pan 已提交
675 676 677 678 679 680
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

681
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
682

683 684 685
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
686
        Returns:
687
            Parameter: the parameter passed in.
X
Xin Pan 已提交
688
        """
689 690 691 692 693 694
        if parameter is None:
            self._parameters[name] = None
        elif not isinstance(parameter, framework.Parameter):
            raise TypeError(
                "parameter assignment requires Parameter or None, but got '{}'"
                .format(type(parameter).__name__))
695

H
hong 已提交
696 697 698 699 700
        if len(self._loaddict_holder) > 0:
            assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                parameter.name)

            parameter.set_value(self._loaddict_holder[parameter.name])
701 702

        self._parameters[name] = parameter
X
Xin Pan 已提交
703 704
        return parameter

X
Xin Pan 已提交
705 706 707 708 709
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
710 711
        elif name in self._buffers:
            return self._buffers[name]
712 713
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
714 715

    def __setattr__(self, name, value):
S
songyouwei 已提交
716 717 718 719 720
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

721 722
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
723
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
724 725 726 727
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
728 729 730 731 732 733
            if len(self._loaddict_holder) > 0:
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in stat_dict".format(
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

734
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
735
            params[name] = value
736 737 738 739 740 741
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
742
        else:
743 744 745 746 747 748 749
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

750
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
751 752 753 754 755 756 757 758
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
                _buffers = self.__dict__.get('_buffers', None)
                if type(value) == core.VarBase:
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
                    if value is not None:
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
                    # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                    # it will be remarked as a buffer with same `persistable` attribute.
                    _buffers[name] = None
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
782 783 784 785 786 787

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
788 789 790
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
791 792 793
        else:
            object.__delattr__(self, name)

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    def __dir__(self):
        """
        Return a list. Get all parameters, buffers(non-parameter variables), sublayers, method and attr of Layer.

        Examples:
            import paddle.fluid as fluid
            import numpy as np

            fluid.dygraph.enable_dygraph()

            class Mylayer(fluid.dygraph.Layer):
                def __init__(self):
                    super(Mylayer, self).__init__()
                    self.linear1 = fluid.dygraph.Linear(10, 10)
                    self.linear2 = fluid.dygraph.Linear(5, 5)
                    self.conv2d = fluid.dygraph.Conv2D(3, 2, 3)
                    self.embedding = fluid.dygraph.Embedding(size=[128, 16])
                    self.h_0 = fluid.dygraph.to_variable(np.zeros([10, 10]).astype('float32'))

            mylayer = Mylayer()
            print(dir(mylayer))
            # only parts are shown, because of list have too much content
            # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

H
hong 已提交
829 830 831 832
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
833
        '''
834
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
835

836
        Parameters:
837 838
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
H
hong 已提交
839 840

        Retruns:
841
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
842 843

        Examples:
844 845
            .. code-block:: python

H
hong 已提交
846 847
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
848
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
849 850 851 852 853 854

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

855 856 857 858
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
859
                destination[structured_name_prefix + name] = data
860 861 862
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer
863 864 865 866 867 868

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
869 870 871
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
872 873 874
                    destination = destination_temp
        return destination

H
hong 已提交
875 876 877 878
    def set_dict(self,
                 stat_dict,
                 include_sublayers=True,
                 use_structured_name=True):
H
hong 已提交
879
        '''
880
        Set parameters and persistable buffers from stat_dict. All the parameters and buffers will be reset by the tensor in the stat_dict
H
hong 已提交
881

882
        Parameters:
883 884 885
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and peresistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
H
hong 已提交
886
                                                  Default: True
H
hong 已提交
887 888 889 890
        Returns:
            None

        Examples:
891 892
            .. code-block:: python

H
hong 已提交
893 894
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
895
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
896 897 898 899 900 901 902 903 904

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.set_dict( para_state_dict )

        '''
H
hong 已提交
905 906 907 908 909 910 911 912 913
        self.load_dict(
            stat_dict,
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)

    def load_dict(self,
                  stat_dict,
                  include_sublayers=True,
                  use_structured_name=True):
H
hong 已提交
914
        '''
915
        Set parameters and persistable buffers from stat_dict. All the parameters and persistabl buffers will be reset by the tensor in the stat_dict
H
hong 已提交
916 917 918

        This api will be Deprecated. Please use set_dict

919
        Parameters:
920 921 922
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
923
                                                  Default: True
H
hong 已提交
924 925 926 927
        Returns:
            None

        Examples:
928 929
            .. code-block:: python

H
hong 已提交
930 931
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
932
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
933 934 935 936 937 938 939 940 941 942

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.load_dict( para_state_dict )

        '''

H
hong 已提交
943 944
        inner_state_dict = self.state_dict()

945 946
        for name, param_or_buffer in inner_state_dict.items():
            key_name = name if use_structured_name else param_or_buffer.name
H
hong 已提交
947
            if key_name in stat_dict:
948
                param_or_buffer.set_value(stat_dict[key_name])
H
hong 已提交
949 950
            else:
                raise RuntimeError(
951
                    "Parameter or persistable buffer not found, Can't find [ {} ] in stat_dict"
H
hong 已提交
952 953 954 955 956 957 958 959
                    "use_structured_name is set to [{}]".format(
                        key_name, use_structured_name))
        unused_para_list = []
        for k, v in stat_dict.items():
            if k not in inner_state_dict:
                unused_para_list.append(k)
        if len(unused_para_list) > 0:
            warnings.warn(
960
                "Variables [ {} ] are not used, because not included in layers state_dict".
H
hong 已提交
961
                format(" ".join(unused_para_list)))