layers.py 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23 24
import copy
import weakref
import warnings

C
chengduo 已提交
25
from . import parallel_helper
X
Xin Pan 已提交
26
from .. import unique_name
27
from paddle.fluid import core
28
from .layer_object_helper import LayerObjectHelper
29
from .base import program_desc_tracing_guard, param_guard
30
from paddle.fluid import framework
31
from ..param_attr import ParamAttr
32 33 34
from paddle.fluid.executor import Executor, global_scope
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import _current_expected_place as _get_device
35

36
__all__ = ['Layer']
37

38 39 40 41 42 43 44 45
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
63
class Layer(core.Layer):
64 65 66 67 68 69
    """
    :alias_main: paddle.nn.Layer
	:alias: paddle.nn.Layer
	:old_api: paddle.fluid.dygraph.layers.Layer

    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
70

71
    Parameters:
72 73
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
74 75 76
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
77 78 79 80 81 82 83
        dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                Default: ``core.VarDesc.VarType.FP32``
    
    Returns:
        None
X
Xin Pan 已提交
84
    """
X
Xin Pan 已提交
85

86
    def __init__(self, name_scope=None, dtype=core.VarDesc.VarType.FP32):
87
        self.training = True
88
        if name_scope is None:
89 90
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
91
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
92
        self._built = False
M
minqiyang 已提交
93
        self._dtype = dtype
94
        self._init_in_dynamic_mode = framework.in_dygraph_mode()
95

X
Xin Pan 已提交
96
        self._parameters = collections.OrderedDict()
97 98 99
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
100
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
101
        self._loaddict_holder = collections.OrderedDict()
102

103 104 105
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
106
    def train(self):
107 108 109 110 111 112 113 114
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
115
        framework._dygraph_tracer().train_mode()
116 117 118 119
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
            layer.train()
M
minqiyang 已提交
120 121

    def eval(self):
122 123 124 125 126 127 128 129
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
        """
        # global setting
M
minqiyang 已提交
130
        framework._dygraph_tracer().eval_mode()
131 132 133 134
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
            layer.eval()
M
minqiyang 已提交
135

L
LielinJiang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
              
153
              paddle.disable_static()
L
LielinJiang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
              
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
                      new_weight = paddle.fill_constant(layer.weight.shape, layer.weight.dtype, value=0.9)
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
168
        for layer in self.children():
L
LielinJiang 已提交
169 170 171 172 173 174
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
175
    def full_name(self):
176
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
177

178 179
        Returns:
            str: full name of this layer.
X
Xin Pan 已提交
180 181 182
        """
        return self._full_name

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
201
              import numpy as np
202 203 204 205 206 207 208 209 210 211 212 213 214 215

              # the forward_post_hook change the output of the layer: output = output * 2 
              def forward_post_hook(layer, input, output):
                  # user can use layer, input and output for information statistis tasks

                  # change the output 
                  return output * 2

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
                  
Z
zhongpu 已提交
216 217
                  value1 = np.arange(26).reshape(2, 13).astype("float32")
                  in1 = fluid.dygraph.to_variable(value1)
218
                  
Z
zhongpu 已提交
219
                  out0 = linear(in1)
220 221 222 223
                  
                  # remove the hook
                  forward_post_hook_handle.remove()

Z
zhongpu 已提交
224
                  out1 = linear(in1)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

                  # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                  assert (out0.numpy() == (out1.numpy()) * 2).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
Z
zhongpu 已提交
253
              import numpy as np
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

              # the forward_post_hook change the input of the layer: input = input * 2
              def forward_pre_hook(layer, input):
                  # user can use layer and input for information statistis tasks

                  # change the input
                  input_return = (input[0] * 2)
                  return input_return

              with fluid.dygraph.guard():
                  linear = fluid.Linear(13, 5, dtype="float32")

                  # register the hook
                  forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)

                  value0 = np.arange(26).reshape(2, 13).astype("float32")
                  in0 = fluid.dygraph.to_variable(value0)
                  out0 = linear(in0)

                  # remove the hook
                  forward_pre_hook_handle.remove()

                  value1 = value0 * 2
                  in1 = fluid.dygraph.to_variable(value1)
                  out1 = linear(in1)

                  # hook change the linear's input to input * 2, so out0 is equal to out1.
                  assert (out0.numpy() == out1.numpy()).any()
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

287 288
    def create_parameter(self,
                         shape,
289
                         attr=None,
290
                         dtype=None,
291 292
                         is_bias=False,
                         default_initializer=None):
293 294 295
        """Create parameters for this layer.
        
        Parameters:
296 297 298
            shape(list): Shape of the parameter.
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_fluid_ParamAttr`. Default: None.
            dtype(str or core.VarDesc.VarType or str, optional): Data type of this parameter.
299
                If set str, it can be "bool",  "float16", "float32", "float64",
300 301
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
302 303
            default_initializer(Initializer, optional): the default initializer for this parameter.
                If set None, default initializer will be set to :ref:`api_fluid_initializer_XavierInitializer` and :ref:`api_fluid_initializer_ConstantInitializer`
304
                for non-bias and bias parameter, respectively. Default: None.
305

306 307
        Returns:
            :ref:`api_guide_Variable_en` : created parameter.
308
        """
H
hong 已提交
309 310 311 312
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
313 314 315 316 317 318 319 320
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
321
        """Create Variable for this layer.
322

323 324 325 326 327 328 329 330
        Parameters:
            name(str, optional): name of the variable. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this variable persistable. Default: False
            dtype(str or core.VarDesc.VarType, optional): data type of this parameter.
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
                If set None, it will be ``core.VarDesc.VarType.FP32``. Default: None
            type(core.VarDesc.VarType, optional): type of the variable. No need to set this parameter. Default: ``core.VarDesc.VarType.LOD_TENSOR``
331

332 333
        Returns:
            :ref:`api_guide_Variable_en` : created Variable.
334 335 336 337 338 339 340 341 342 343
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
344
    def parameters(self, include_sublayers=True):
345
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
346

347 348
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
349

350 351
        Returns:
            list of :ref:`api_guide_Variable_en` : a list of Parameters.
X
Xin Pan 已提交
352
        """
353 354 355 356 357
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
358
        return ret
X
Xin Pan 已提交
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    
                    layer_list = list(model.children())

                    print(layer_list)

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_children():
                        print(prefix, layer)

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

X
Xin Pan 已提交
410 411 412
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

413 414
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
415

416 417
        Returns:
            list of Layer : a list of sub layers.
X
Xin Pan 已提交
418
        """
419 420 421 422 423
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
424 425
        return ret

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for name, param in model.named_parameters():
                        print(name, param)

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    fc2 = fluid.Linear(3, 10, bias_attr=False)
                    model = fluid.dygraph.Sequential(fc1, fc2)
                    for prefix, layer in model.named_sublayers():
                        print(prefix, layer)

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    def register_buffer(self, name, variable, persistable=True):
        """
        Registers a variable as buffer into the layer.

        `buffer` is a non-parameteric variable and will not be updated by optimizer,
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
            variable (Variable): the variable to be registered as buffer.
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    linear = fluid.Linear(10, 3)
                    value = np.array([0]).astype("float32")
                    buffer = fluid.dygraph.to_variable(value)
                    linear.register_buffer("buf_name", buffer, persistable=True)
                    
                    # get the buffer by attribute.
                    print(linear.buf_name)

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
560 561 562 563
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
        elif variable is not None and not type(variable) == core.VarBase:
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
                format(type(variable).__name__))
        else:
            self._buffers[name] = variable
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
            list of :ref:`api_guide_Variable_en` : a list of buffers.
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Variable.

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
            (string, Variable): Tuple of name and Variable

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                with fluid.dygraph.guard():
                    fc1 = fluid.Linear(10, 3)
                    buffer1 = fluid.dygraph.to_variable(np.array([0]).astype("float32"))
                    # register a variable as buffer by specific `persistable`
                    fc1.register_buffer("buf_name_1", buffer1, persistable=True)

                    fc2 = fluid.Linear(3, 10)
                    buffer2 = fluid.dygraph.to_variable(np.array([1]).astype("float32"))
                    # register a buffer by assigning an attribute with Variable.
                    # The `persistable` can only be False by this way.
                    fc2.buf_name_2 = buffer2

                    model = fluid.dygraph.Sequential(fc1, fc2)

                    # get all named buffers
                    for name, buffer in model.named_buffers():
                        print(name, buffer)

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
647
    def clear_gradients(self):
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    adam = fluid.optimizer.Adam(learning_rate=0.01, 
                                                parameter_list=linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    linear.clear_gradients()

        """
X
Xin Pan 已提交
672
        for p in self.parameters():
673 674
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
675

676
    def _build_once(self, *args, **kwargs):
677 678
        pass

679
    def __call__(self, *inputs, **kwargs):
680 681 682 683 684 685 686
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

X
Xin Pan 已提交
687
        if not self._built:
688 689 690 691 692
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)
                if parallel_helper._is_data_parallel_mode():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())
693
            self._built = True
694

695
        with param_guard(self._parameters), param_guard(self._buffers):
696
            outputs = self.forward(*inputs, **kwargs)
697 698 699 700 701 702

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

M
minqiyang 已提交
703
        return outputs
M
minqiyang 已提交
704

705
    def forward(self, *inputs, **kwargs):
706 707 708 709 710 711 712 713
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
714
        raise NotImplementedError
X
Xin Pan 已提交
715 716 717 718

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
719 720 721
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

722
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
723

724 725 726
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
727
        Returns:
728
            Layer: the sublayer passed in.
X
Xin Pan 已提交
729 730
        """
        assert isinstance(sublayer, core.Layer)
731

X
Xin Pan 已提交
732 733 734 735 736 737
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

738
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
739

740 741 742
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
743
        Returns:
744
            Parameter: the parameter passed in.
X
Xin Pan 已提交
745
        """
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
764
            raise TypeError(
765 766 767 768 769
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
770

771 772 773
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
774

775
                parameter.set_value(self._loaddict_holder[parameter.name])
776

777
            self._parameters[name] = parameter
X
Xin Pan 已提交
778 779
        return parameter

X
Xin Pan 已提交
780 781 782 783 784
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]
785 786
        elif name in self._buffers:
            return self._buffers[name]
787 788
        else:
            return object.__getattribute__(self, name)
X
Xin Pan 已提交
789 790

    def __setattr__(self, name, value):
S
songyouwei 已提交
791 792 793 794 795
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

796 797
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
798
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
799 800 801 802
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
803
            if len(self._loaddict_holder) > 0:
804
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
805 806 807 808
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

809
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
810
            params[name] = value
811 812 813 814 815 816
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
817
        else:
818 819 820 821 822 823 824
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

825
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
826 827 828 829 830 831 832 833
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
                _buffers = self.__dict__.get('_buffers', None)
                if type(value) == core.VarBase:
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
                    if value is not None:
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
                    # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                    # it will be remarked as a buffer with same `persistable` attribute.
                    _buffers[name] = None
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
857 858 859 860 861 862

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
863 864 865
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
866 867 868
        else:
            object.__delattr__(self, name)

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    def __dir__(self):
        """
        Return a list. Get all parameters, buffers(non-parameter variables), sublayers, method and attr of Layer.

        Examples:
            import paddle.fluid as fluid
            import numpy as np

            fluid.dygraph.enable_dygraph()

            class Mylayer(fluid.dygraph.Layer):
                def __init__(self):
                    super(Mylayer, self).__init__()
                    self.linear1 = fluid.dygraph.Linear(10, 10)
                    self.linear2 = fluid.dygraph.Linear(5, 5)
                    self.conv2d = fluid.dygraph.Conv2D(3, 2, 3)
                    self.embedding = fluid.dygraph.Embedding(size=[128, 16])
                    self.h_0 = fluid.dygraph.to_variable(np.zeros([10, 10]).astype('float32'))

            mylayer = Mylayer()
            print(dir(mylayer))
            # only parts are shown, because of list have too much content
            # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

H
hong 已提交
904 905 906 907
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
908
        '''
909
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
910

911
        Parameters:
912 913
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
H
hong 已提交
914 915

        Retruns:
916
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
917 918

        Examples:
919 920
            .. code-block:: python

H
hong 已提交
921 922
                import paddle.fluid as fluid
                with fluid.dygraph.guard():
923
                    emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
924 925 926 927 928 929

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

930 931 932 933
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
934
                destination[structured_name_prefix + name] = data
935 936 937
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer
938 939 940 941 942 943

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
944 945 946
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
947 948 949
                    destination = destination_temp
        return destination

950 951 952 953 954
    @framework.deprecate_stat_dict
    def set_state_dict(self,
                       state_dict,
                       include_sublayers=True,
                       use_structured_name=True):
H
hong 已提交
955
        '''
956
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
957

958
        Parameters:
959 960 961
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and peresistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
H
hong 已提交
962
                                                  Default: True
H
hong 已提交
963 964 965 966
        Returns:
            None

        Examples:
967 968
            .. code-block:: python

969 970 971 972 973
                import paddle
                
                paddle.disable_static()
                
                emb = paddle.nn.Embedding([10, 10])
H
hong 已提交
974

975 976 977 978
                state_dict = emb.state_dict()
                paddle.save(state_dict, "paddle_dy")
                
                para_state_dict, _ = paddle.load("paddle_dy")
H
hong 已提交
979

980
                emb.set_state_dict(para_state_dict)
H
hong 已提交
981

H
hong 已提交
982 983
        '''

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

        if in_dygraph_mode():
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict