layers.py 50.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25

C
chengduo 已提交
26
from . import parallel_helper
X
Xin Pan 已提交
27
from .. import unique_name
28
from paddle.fluid import core
29
from .layer_object_helper import LayerObjectHelper
30
from .base import program_desc_tracing_guard, param_guard
31
from paddle.fluid import framework
32
from ..param_attr import ParamAttr
33 34 35
from paddle.fluid.executor import Executor, global_scope
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import _current_expected_place as _get_device
W
wanghuancoder 已提交
36
import paddle.utils.deprecated as deprecated
37

38
__all__ = ['Layer']
39

40 41 42 43 44 45 46 47
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

48

49 50 51 52 53 54 55 56 57 58 59
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


X
Xin Pan 已提交
76
class Layer(core.Layer):
77 78
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
79

80
    Parameters:
81 82
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
83 84 85
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
86
        dtype(str, optional): data type of this parameter.
87 88
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
89
                Default: "float32"
90 91 92
    
    Returns:
        None
X
Xin Pan 已提交
93
    """
X
Xin Pan 已提交
94

95
    def __init__(self, name_scope=None, dtype="float32"):
96
        self.training = True
97
        if name_scope is None:
98 99
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
100
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
101
        self._built = False
M
minqiyang 已提交
102
        self._dtype = dtype
103
        self._init_in_dynamic_mode = framework.in_dygraph_mode()
104

X
Xin Pan 已提交
105
        self._parameters = collections.OrderedDict()
106 107 108
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
109
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
110
        self._loaddict_holder = collections.OrderedDict()
111

112 113 114
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

M
minqiyang 已提交
115
    def train(self):
116 117 118 119 120 121
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

146
        """
147 148 149 150 151
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().train_mode()
152 153 154 155
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
            layer.train()
M
minqiyang 已提交
156 157

    def eval(self):
158 159 160 161 162 163
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

187
        """
188 189 190 191 192
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().eval_mode()
193 194 195 196
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
            layer.eval()
M
minqiyang 已提交
197

L
LielinJiang 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
214

L
LielinJiang 已提交
215 216 217 218 219
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
220
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
221 222 223 224 225 226 227
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
228
        for layer in self.children():
L
LielinJiang 已提交
229 230 231 232 233 234
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
235
    def full_name(self):
236
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
237

238 239
        Returns:
            str: full name of this layer.
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
257 258 259
        """
        return self._full_name

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
 
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

277 278 279 280 281 282
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
283

284 285
                    # change the output
                    return output * 2
286

287
                linear = paddle.nn.Linear(13, 5)
288

289 290
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
291

292 293
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
294

295
                out0 = linear(in1)
296

297 298 299 300 301 302 303
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
        
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if 
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

328 329
                import paddle
                import numpy as np
330

331 332 333
                # the forward_post_hook change the input of the layer: input = input * 2
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
334

335 336 337
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
338

339
                linear = paddle.nn.Linear(13, 5)
340

341 342
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
343

344 345 346
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
347

348 349
                # remove the hook
                forward_pre_hook_handle.remove()
350

351 352 353
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
354

355 356
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
357 358 359 360 361
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

362 363
    def create_parameter(self,
                         shape,
364
                         attr=None,
365
                         dtype=None,
366 367
                         is_bias=False,
                         default_initializer=None):
368 369 370
        """Create parameters for this layer.
        
        Parameters:
371
            shape(list): Shape of the parameter.
372 373
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
374
                If set str, it can be "bool",  "float16", "float32", "float64",
375 376
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
377
            default_initializer(Initializer, optional): the default initializer for this parameter.
378
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
379
                for non-bias and bias parameter, respectively. Default: None.
380

381
        Returns:
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

403
        """
H
hong 已提交
404 405 406 407
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
408 409
                                             default_initializer)

W
wanghuancoder 已提交
410 411 412 413
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.")
414
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
415 416 417
        """

        Create Tensor for this layer.
418

419
        Parameters:
W
wanghuancoder 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
471
            dtype(str, optional): data type of this parameter.
472 473
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
474
                If set None, it will be "float32". Default: None
475

476
        Returns:
W
wanghuancoder 已提交
477
            Tensor, created Tensor.
478 479 480 481 482 483 484 485 486 487 488 489 490

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
                            
W
wanghuancoder 已提交
491
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
492 493 494 495 496 497 498
                    
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
                        
                        return out

499 500 501 502 503 504 505 506
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
507 508 509 510
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
511

X
polish  
Xin Pan 已提交
512
    def parameters(self, include_sublayers=True):
513
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
514

515 516
        Parameters:
            include_sublayers(bool, optional): Whether include the parameters of sublayers. If True, also include the parameters from sublayers. Default: True
X
Xin Pan 已提交
517

518
        Returns:
519 520 521 522 523 524 525 526 527 528
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
529
        """
530 531 532 533 534
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
535
        return ret
X
Xin Pan 已提交
536

537 538 539 540 541 542 543 544 545
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

546
                import paddle
547

548 549 550 551 552
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
553

554
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

570
                import paddle
571

572 573 574 575 576 577 578
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
579 580 581 582 583 584 585 586

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

X
Xin Pan 已提交
587 588 589
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

590 591
        Parameters:
            include_sublayers(bool, optional): Whether return the sublayers of sublayers. If True, also include the sublayers of sublayers. Default: True
X
Xin Pan 已提交
592

593 594
        Returns:
            list of Layer : a list of sub layers.
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
615
        """
616 617 618 619 620
        ret = [
            layer
            for _, layer in self.named_sublayers(
                include_sublayers=include_sublayers)
        ]
X
Xin Pan 已提交
621 622
        return ret

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

638
                import paddle
639

640 641 642 643 644
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

    def named_sublayers(self,
                        prefix='',
                        include_sublayers=True,
                        include_self=False,
                        layers_set=None):
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the sublayers. Default: True.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
            layers_set(set, optioanl): The set to record duplicate sublayers. Default: None.

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

682
                import paddle
683

684 685 686 687 688
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
        if include_sublayers:
            for key, layer in self._sub_layers.items():
                if layer is None:
                    continue
                layer_prefix = prefix + ('.' if prefix else '') + key
                for p, l in layer.named_sublayers(
                        prefix=layer_prefix,
                        include_sublayers=include_sublayers,
                        include_self=True,
                        layers_set=layers_set):
                    yield p, l

708
    def register_buffer(self, name, tensor, persistable=True):
709
        """
710
        Registers a tensor as buffer into the layer.
711

712
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
713 714 715 716 717 718 719 720 721 722
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
723
            tensor (Tensor): the tensor to be registered as buffer.
724 725 726 727 728 729 730 731 732 733
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import numpy as np
734
                import paddle
735

736 737 738 739 740 741 742
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
743 744 745 746 747 748 749 750 751 752 753

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
754 755 756 757
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
758 759 760 761
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
762
        elif tensor is not None and not type(tensor) == core.VarBase:
763 764
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
765
                format(type(tensor).__name__))
766
        else:
767
            self._buffers[name] = tensor
768 769 770 771 772 773 774 775 776 777 778 779 780
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

796 797 798 799 800 801 802 803 804 805
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
806
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
807 808 809 810 811 812 813

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
814
            (string, Tensor): Tuple of name and tensor
815 816 817 818 819

        Examples:
            .. code-block:: python

                import numpy as np
820
                import paddle
821

822 823 824 825
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
826

827 828 829 830 831
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
832

833
                model = paddle.nn.Sequential(fc1, fc2)
834

835 836 837
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
            include_sublayers=include_sublayers,
            include_self=True)
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
854
    def clear_gradients(self):
855 856 857 858 859 860 861 862 863
        """
        Clear the gradients of all parameters for this layer.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

864
                import paddle
865 866
                import numpy as np

867 868 869 870 871 872 873 874 875
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
876 877

        """
X
Xin Pan 已提交
878
        for p in self.parameters():
879 880
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
881

882
    def _build_once(self, *args, **kwargs):
883 884
        pass

885
    def __call__(self, *inputs, **kwargs):
886
        with param_guard(self._parameters), param_guard(self._buffers):
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
            for forward_pre_hook in self._forward_pre_hooks.values():
                hook_result = forward_pre_hook(self, inputs)
                if hook_result is not None:
                    if not isinstance(hook_result, tuple):
                        hook_result = (hook_result, )
                    inputs = hook_result

            if not self._built:
                with program_desc_tracing_guard(False):
                    self._build_once(*inputs, **kwargs)
                    if parallel_helper._is_data_parallel_mode():
                        parallel_helper._broadcast_parameters(
                            self._parameters.values())
                self._built = True

902
            outputs = self.forward(*inputs, **kwargs)
903

904 905 906 907
            for forward_post_hook in self._forward_post_hooks.values():
                hook_result = forward_post_hook(self, inputs, outputs)
                if hook_result is not None:
                    outputs = hook_result
908

909
            return outputs
M
minqiyang 已提交
910

911
    def forward(self, *inputs, **kwargs):
912 913 914 915 916 917 918 919
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
920
        raise NotImplementedError
X
Xin Pan 已提交
921 922 923 924

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
925 926 927
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

928
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
929

930 931 932
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
933
        Returns:
934
            Layer: the sublayer passed in.
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
961 962
        """
        assert isinstance(sublayer, core.Layer)
963

X
Xin Pan 已提交
964 965 966 967 968 969
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

970
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
971

972 973 974
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
975
        Returns:
976
            Parameter: the parameter passed in.
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
996
        """
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1015
            raise TypeError(
1016 1017 1018 1019 1020
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
1021

1022 1023 1024
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1025

1026
                parameter.set_value(self._loaddict_holder[parameter.name])
1027

1028
            self._parameters[name] = parameter
X
Xin Pan 已提交
1029 1030
        return parameter

1031 1032 1033 1034 1035 1036
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1037
    def __getattr__(self, name):
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1051 1052

    def __setattr__(self, name, value):
S
songyouwei 已提交
1053 1054 1055 1056 1057
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1058 1059
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1060
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1061 1062 1063 1064
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1065
            if len(self._loaddict_holder) > 0:
1066
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1067 1068 1069 1070
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1071
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1072
            params[name] = value
1073 1074 1075 1076 1077 1078
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
1079
        else:
1080 1081 1082 1083 1084 1085 1086
            layers = self.__dict__.get('_sub_layers', None)
            if isinstance(value, core.Layer):
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1087
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1088 1089 1090 1091 1092 1093 1094 1095
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
                _buffers = self.__dict__.get('_buffers', None)
                if type(value) == core.VarBase:
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1110 1111 1112 1113 1114
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in 
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1115 1116 1117 1118 1119 1120 1121 1122 1123
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
                        if _buffers[name] is None or type(_buffers[
                                name]) == core.VarBase:
                            _buffers[name] = assign(value)
                        else:
                            assign(value, _buffers[name])
1124
                    elif value is not None:
1125 1126 1127
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
1128 1129 1130 1131
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1132 1133
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1134 1135 1136 1137 1138 1139

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1140 1141 1142
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1143 1144 1145
        else:
            object.__delattr__(self, name)

1146 1147
    def __dir__(self):
        """
W
wanghuancoder 已提交
1148
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1149 1150

        Examples:
1151 1152 1153
            .. code-block:: python
                import paddle
                import numpy as np
1154

1155 1156 1157 1158 1159
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1160
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1161 1162
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1163

1164 1165 1166 1167
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

H
hong 已提交
1209 1210 1211 1212
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
1213
        '''
1214
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1215

1216
        Parameters:
1217 1218
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
H
hong 已提交
1219 1220

        Retruns:
1221
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1222 1223

        Examples:
1224 1225
            .. code-block:: python

1226
                import paddle
H
hong 已提交
1227

1228 1229 1230 1231
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1232 1233 1234

        '''

1235 1236 1237 1238
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
H
hong 已提交
1239
                destination[structured_name_prefix + name] = data
1240 1241 1242
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer
1243 1244 1245 1246 1247 1248

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
H
hong 已提交
1249 1250 1251
                        layer_item.state_dict(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
1252 1253 1254
                    destination = destination_temp
        return destination

1255 1256 1257 1258 1259
    @framework.deprecate_stat_dict
    def set_state_dict(self,
                       state_dict,
                       include_sublayers=True,
                       use_structured_name=True):
H
hong 已提交
1260
        '''
1261
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1262

1263
        Parameters:
1264 1265 1266
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
            include_sublayers(bool, optional) : If true, also include the parameters and peresistable buffers from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. 
H
hong 已提交
1267
                                                  Default: True
H
hong 已提交
1268 1269 1270 1271
        Returns:
            None

        Examples:
1272 1273
            .. code-block:: python

1274
                import paddle
1275

1276
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1277

1278
                state_dict = emb.state_dict()
1279 1280
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1281
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1282

H
hong 已提交
1283 1284
        '''

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

        if in_dygraph_mode():
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1309

1310 1311 1312 1313 1314 1315 1316
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1317 1318 1319 1320
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict