slice_op_plugin.cu 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <stdio.h>
#include <cassert>
#include <cub/cub.cuh>  // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

template <typename T>
__global__ void SliceKernel(int num, int dims, const T *input,
                            const int *offsets_info, T *output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  extern __shared__ int shared_data[];

34 35
  for (int i = threadIdx.x; i < dims * 3; i += blockDim.x) {
    shared_data[i] = offsets_info[i];
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  }
  __syncthreads();

  if (idx < num) {
    int t_idx = idx;
    int in_idx = 0;
    for (int i = dims - 1; i >= 0; i--) {
      // output_shape
      auto t = t_idx % shared_data[i * 3 + 1];
      // out offset
      auto s = t + shared_data[i * 3];
      // input_seg_offset
      in_idx = in_idx + shared_data[i * 3 + 2] * s;
      t_idx = t_idx / shared_data[i * 3 + 1];
    }
    output[idx] = input[in_idx];
  }
}

55
SlicePlugin::SlicePlugin(std::vector<int> starts, std::vector<int> ends,
56 57 58
                         std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
59 60 61 62 63 64 65 66 67
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::SlicePlugin(void const *serial_data, size_t serial_length) {
  deserializeBase(serial_data, serial_length);
  DeserializeValue(&serial_data, &serial_length, &starts_);
  DeserializeValue(&serial_data, &serial_length, &ends_);
  DeserializeValue(&serial_data, &serial_length, &axes_);
W
wenbin 已提交
68
  DeserializeValue(&serial_data, &serial_length, &with_fp16_);
69 70 71 72 73 74 75 76 77 78
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::~SlicePlugin() {
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
}

79
SlicePlugin *SlicePlugin::clone() const TRT_NOEXCEPT {
80
  return new SlicePlugin(starts_, ends_, axes_, with_fp16_);
81 82
}

83 84
bool SlicePlugin::supportsFormat(
    nvinfer1::DataType type, nvinfer1::PluginFormat format) const TRT_NOEXCEPT {
85
  if (with_fp16_) {
86 87
    return ((type == nvinfer1::DataType::kFLOAT ||
             type == nvinfer1::DataType::kHALF) &&
88
            (format == nvinfer1::PluginFormat::kLINEAR));
89 90
  } else {
    return ((type == nvinfer1::DataType::kFLOAT) &&
91
            (format == nvinfer1::PluginFormat::kLINEAR));
92
  }
93 94
}

95 96
nvinfer1::Dims SlicePlugin::getOutputDimensions(
    int index, const nvinfer1::Dims *inputs, int nb_input_dims) TRT_NOEXCEPT {
97 98 99 100 101 102 103 104 105 106 107
  auto in_dims = inputs[0];
  nvinfer1::Dims out_dims = in_dims;
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    out_dims.d[axes_[i] - 1] = end - start;
  }
  return out_dims;
}

int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
108
#if IS_TRT_VERSION_LT(8000)
109
                         void **outputs, void *workspace, cudaStream_t stream) {
110 111
#else
                         void *const *outputs, void *workspace,
112
                         cudaStream_t stream) TRT_NOEXCEPT {
113
#endif
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  auto input_dims = getInputDims(0);

  // notice input dims is [C, H, W], add input batch dim here
  auto out_dims = getOutputDimensions(0, &input_dims, 1);
  input_dims.nbDims += 1;
  out_dims.nbDims += 1;
  for (auto i = input_dims.nbDims; i > 0; --i) {
    input_dims.d[i] = input_dims.d[i - 1];
    out_dims.d[i] = out_dims.d[i - 1];
  }
  input_dims.d[0] = batch_size;
  out_dims.d[0] = batch_size;

  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }
  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }

  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);

  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = getDataType();
  if (input_type == nvinfer1::DataType::kFLOAT) {
172
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
173 174 175 176 177
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
178
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
179 180 181 182 183 184 185 186 187 188 189
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}

190
size_t SlicePlugin::getSerializationSize() const TRT_NOEXCEPT {
W
wenbin 已提交
191 192 193
  return getBaseSerializationSize() + SerializedSize(starts_) +
         SerializedSize(ends_) + SerializedSize(axes_) +
         SerializedSize(with_fp16_);
194 195
}

196
void SlicePlugin::serialize(void *buffer) const TRT_NOEXCEPT {
197 198 199 200
  serializeBase(buffer);
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
W
wenbin 已提交
201
  SerializeValue(&buffer, with_fp16_);
202 203 204 205 206 207
}

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
SlicePluginDynamic::SlicePluginDynamic(std::vector<int> starts,
                                       std::vector<int> ends,
208 209 210
                                       std::vector<int> axes, int decrease_axis,
                                       bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes), decrease_axis_(decrease_axis) {
211
  with_fp16_ = with_fp16;
212 213 214 215 216 217 218 219 220
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePluginDynamic::SlicePluginDynamic(void const *serialData,
                                       size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &starts_);
  DeserializeValue(&serialData, &serialLength, &ends_);
  DeserializeValue(&serialData, &serialLength, &axes_);
221
  DeserializeValue(&serialData, &serialLength, &decrease_axis_);
222
  DeserializeValue(&serialData, &serialLength, &with_fp16_);
223 224 225 226
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

227
void SlicePluginDynamic::destroy() TRT_NOEXCEPT {
228 229 230 231 232 233
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
  delete this;
}

234
int SlicePluginDynamic::initialize() TRT_NOEXCEPT { return 0; }
235

236
size_t SlicePluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
237
  size_t size = SerializedSize(starts_) + SerializedSize(ends_) +
238 239
                SerializedSize(axes_) + SerializedSize(decrease_axis_) +
                SerializedSize(with_fp16_);
240

241 242 243
  return size;
}

244
void SlicePluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
245 246 247
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
248
  SerializeValue(&buffer, decrease_axis_);
249
  SerializeValue(&buffer, with_fp16_);
250
}
251 252 253

nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
254
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
255
  auto in_dims = inputs[0];
256
  nvinfer1::DimsExprs ret = in_dims;
257 258 259 260
  // start, ends should greater 0
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
S
Shang Zhizhou 已提交
261 262 263 264 265 266 267 268
#if IS_TRT_VERSION_GE(7200)
    ret.d[axes_[i]] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUB,
        *expr_builder.operation(nvinfer1::DimensionOperation::kMIN,
                                *expr_builder.constant(ends_[i]),
                                *in_dims.d[axes_[i]]),
        *expr_builder.constant(start));
#else
269
    ret.d[axes_[i]] = expr_builder.constant(end - start);
S
Shang Zhizhou 已提交
270
#endif
271
  }
272 273 274 275 276 277 278 279 280 281 282
  if (decrease_axis_ != -1) {
    nvinfer1::DimsExprs res;
    res.nbDims = ret.nbDims - 1;
    int j = 0;
    for (size_t i = 0; i < in_dims.nbDims; i++) {
      if (decrease_axis_ == i) continue;
      res.d[j++] = expr_builder.operation(nvinfer1::DimensionOperation::kMAX,
                                          *expr_builder.constant(0), *ret.d[i]);
    }
    return res;
  }
283 284 285 286 287
  return ret;
}

bool SlicePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
288
    int nb_outputs) TRT_NOEXCEPT {
289 290 291 292 293 294 295 296 297 298 299 300
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
301
    if (with_fp16_) {
302 303
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
304
             (in.format == nvinfer1::TensorFormat::kLINEAR);
305 306 307
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
308 309 310 311 312 313 314 315
    }
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SlicePluginDynamic::getOutputDataType(
316 317
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
318 319 320 321 322 323 324 325 326 327 328 329 330 331
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Slice Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT ||
                     input_types[0] == nvinfer1::DataType::kHALF),
                    true, platform::errors::InvalidArgument(
                              "The input type should be half or float"));
  return input_types[0];
}

int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                const nvinfer1::PluginTensorDesc *output_desc,
                                const void *const *inputs, void *const *outputs,
332 333
                                void *workspace,
                                cudaStream_t stream) TRT_NOEXCEPT {
334 335
  auto input_dims = input_desc[0].dims;
  auto out_dims = output_desc[0].dims;
336 337 338 339
  if (decrease_axis_ != -1) {
    out_dims = input_dims;
    out_dims.d[decrease_axis_] = 1;
  }
340 341 342 343 344 345 346
  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

347 348 349
  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }

  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

371 372 373
  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }
374

375 376 377
  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);
378

379 380
  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);
381 382 383 384 385

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
386
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
387 388 389
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
390
        out_num, num_dims, input1, offset_temp_data_, output);
391
  } else if (input_type == nvinfer1::DataType::kHALF) {
392
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
393 394 395
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
396
        out_num, num_dims, input1, offset_temp_data_, output);
397 398 399 400 401 402 403 404 405 406 407 408
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle