slice_op_plugin.cu 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <stdio.h>
#include <cassert>
#include <cub/cub.cuh>  // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

template <typename T>
__global__ void SliceKernel(int num, int dims, const T *input,
                            const int *offsets_info, T *output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  extern __shared__ int shared_data[];

34 35
  for (int i = threadIdx.x; i < dims * 3; i += blockDim.x) {
    shared_data[i] = offsets_info[i];
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  }
  __syncthreads();

  if (idx < num) {
    int t_idx = idx;
    int in_idx = 0;
    for (int i = dims - 1; i >= 0; i--) {
      // output_shape
      auto t = t_idx % shared_data[i * 3 + 1];
      // out offset
      auto s = t + shared_data[i * 3];
      // input_seg_offset
      in_idx = in_idx + shared_data[i * 3 + 2] * s;
      t_idx = t_idx / shared_data[i * 3 + 1];
    }
    output[idx] = input[in_idx];
  }
}

55
SlicePlugin::SlicePlugin(std::vector<int> starts, std::vector<int> ends,
56 57 58
                         std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
59 60 61 62 63 64 65 66 67
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::SlicePlugin(void const *serial_data, size_t serial_length) {
  deserializeBase(serial_data, serial_length);
  DeserializeValue(&serial_data, &serial_length, &starts_);
  DeserializeValue(&serial_data, &serial_length, &ends_);
  DeserializeValue(&serial_data, &serial_length, &axes_);
W
wenbin 已提交
68
  DeserializeValue(&serial_data, &serial_length, &with_fp16_);
69 70 71 72 73 74 75 76 77 78
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::~SlicePlugin() {
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
}

79
SlicePlugin *SlicePlugin::clone() const TRT_NOEXCEPT {
80
  return new SlicePlugin(starts_, ends_, axes_, with_fp16_);
81 82
}

83 84
bool SlicePlugin::supportsFormat(
    nvinfer1::DataType type, nvinfer1::PluginFormat format) const TRT_NOEXCEPT {
85
  if (with_fp16_) {
86 87 88 89 90
    return ((
#if IS_TRT_VERSION_LT(8000)
                type == nvinfer1::DataType::kFLOAT ||
#endif
                type == nvinfer1::DataType::kHALF) &&
91
            (format == nvinfer1::PluginFormat::kLINEAR));
92 93
  } else {
    return ((type == nvinfer1::DataType::kFLOAT) &&
94
            (format == nvinfer1::PluginFormat::kLINEAR));
95
  }
96 97
}

98 99
nvinfer1::Dims SlicePlugin::getOutputDimensions(
    int index, const nvinfer1::Dims *inputs, int nb_input_dims) TRT_NOEXCEPT {
100 101 102 103 104 105 106 107 108 109 110
  auto in_dims = inputs[0];
  nvinfer1::Dims out_dims = in_dims;
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    out_dims.d[axes_[i] - 1] = end - start;
  }
  return out_dims;
}

int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
111
#if IS_TRT_VERSION_LT(8000)
112
                         void **outputs, void *workspace, cudaStream_t stream) {
113 114
#else
                         void *const *outputs, void *workspace,
115
                         cudaStream_t stream) TRT_NOEXCEPT {
116
#endif
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  auto input_dims = getInputDims(0);

  // notice input dims is [C, H, W], add input batch dim here
  auto out_dims = getOutputDimensions(0, &input_dims, 1);
  input_dims.nbDims += 1;
  out_dims.nbDims += 1;
  for (auto i = input_dims.nbDims; i > 0; --i) {
    input_dims.d[i] = input_dims.d[i - 1];
    out_dims.d[i] = out_dims.d[i - 1];
  }
  input_dims.d[0] = batch_size;
  out_dims.d[0] = batch_size;

  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }
  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }

  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);

  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = getDataType();
  if (input_type == nvinfer1::DataType::kFLOAT) {
175
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
176 177 178 179 180
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
181
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
182 183 184 185 186 187 188 189 190 191 192
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}

193
size_t SlicePlugin::getSerializationSize() const TRT_NOEXCEPT {
W
wenbin 已提交
194 195 196
  return getBaseSerializationSize() + SerializedSize(starts_) +
         SerializedSize(ends_) + SerializedSize(axes_) +
         SerializedSize(with_fp16_);
197 198
}

199
void SlicePlugin::serialize(void *buffer) const TRT_NOEXCEPT {
200 201 202 203
  serializeBase(buffer);
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
W
wenbin 已提交
204
  SerializeValue(&buffer, with_fp16_);
205 206 207 208 209 210
}

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
SlicePluginDynamic::SlicePluginDynamic(std::vector<int> starts,
                                       std::vector<int> ends,
211 212 213
                                       std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
214 215 216 217 218 219 220 221 222
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePluginDynamic::SlicePluginDynamic(void const *serialData,
                                       size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &starts_);
  DeserializeValue(&serialData, &serialLength, &ends_);
  DeserializeValue(&serialData, &serialLength, &axes_);
223
  DeserializeValue(&serialData, &serialLength, &with_fp16_);
224 225 226 227
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

228
void SlicePluginDynamic::destroy() TRT_NOEXCEPT {
229 230 231 232 233 234
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
  delete this;
}

235
int SlicePluginDynamic::initialize() TRT_NOEXCEPT { return 0; }
236

237
size_t SlicePluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
238
  size_t size = SerializedSize(starts_) + SerializedSize(ends_) +
239
                SerializedSize(axes_) + SerializedSize(with_fp16_);
240

241 242 243
  return size;
}

244
void SlicePluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
245 246 247
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
248
  SerializeValue(&buffer, with_fp16_);
249
}
250 251 252

nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
253
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
254
  auto in_dims = inputs[0];
255
  nvinfer1::DimsExprs ret = in_dims;
256 257 258 259
  // start, ends should greater 0
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
S
Shang Zhizhou 已提交
260 261 262 263 264 265 266 267
#if IS_TRT_VERSION_GE(7200)
    ret.d[axes_[i]] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUB,
        *expr_builder.operation(nvinfer1::DimensionOperation::kMIN,
                                *expr_builder.constant(ends_[i]),
                                *in_dims.d[axes_[i]]),
        *expr_builder.constant(start));
#else
268
    ret.d[axes_[i]] = expr_builder.constant(end - start);
S
Shang Zhizhou 已提交
269
#endif
270 271 272 273 274 275
  }
  return ret;
}

bool SlicePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
276
    int nb_outputs) TRT_NOEXCEPT {
277 278 279 280 281 282 283 284 285 286 287 288
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
289
    if (with_fp16_) {
290 291 292 293 294
      return (
#if IS_TRT_VERSION_LT(8000)
                 in.type == nvinfer1::DataType::kFLOAT ||
#endif
                 in.type == nvinfer1::DataType::kHALF) &&
295
             (in.format == nvinfer1::TensorFormat::kLINEAR);
296 297 298
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
299 300 301 302 303 304 305 306
    }
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SlicePluginDynamic::getOutputDataType(
307 308
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
309 310 311 312 313 314 315 316 317 318 319 320 321 322
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Slice Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT ||
                     input_types[0] == nvinfer1::DataType::kHALF),
                    true, platform::errors::InvalidArgument(
                              "The input type should be half or float"));
  return input_types[0];
}

int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                const nvinfer1::PluginTensorDesc *output_desc,
                                const void *const *inputs, void *const *outputs,
323 324
                                void *workspace,
                                cudaStream_t stream) TRT_NOEXCEPT {
325 326 327 328 329 330 331 332 333
  auto input_dims = input_desc[0].dims;
  auto out_dims = output_desc[0].dims;
  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

334 335 336
  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }

  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

358 359 360
  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }
361

362 363 364
  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);
365

366 367
  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);
368 369 370 371 372

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
373
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
374 375 376
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
377
        out_num, num_dims, input1, offset_temp_data_, output);
378
  } else if (input_type == nvinfer1::DataType::kHALF) {
379
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
380 381 382
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
383
        out_num, num_dims, input1, offset_temp_data_, output);
384 385 386 387 388 389 390 391 392 393 394 395
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle