slice_op_plugin.cu 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <stdio.h>
#include <cassert>
#include <cub/cub.cuh>  // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

29 30 31 32
SlicePlugin *CreateSlicePluginDeserialize(const void *buffer, size_t length) {
  return new SlicePlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("slice_plugin", CreateSlicePluginDeserialize);
33 34 35 36 37 38 39

template <typename T>
__global__ void SliceKernel(int num, int dims, const T *input,
                            const int *offsets_info, T *output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  extern __shared__ int shared_data[];

40 41
  for (int i = threadIdx.x; i < dims * 3; i += blockDim.x) {
    shared_data[i] = offsets_info[i];
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  }
  __syncthreads();

  if (idx < num) {
    int t_idx = idx;
    int in_idx = 0;
    for (int i = dims - 1; i >= 0; i--) {
      // output_shape
      auto t = t_idx % shared_data[i * 3 + 1];
      // out offset
      auto s = t + shared_data[i * 3];
      // input_seg_offset
      in_idx = in_idx + shared_data[i * 3 + 2] * s;
      t_idx = t_idx / shared_data[i * 3 + 1];
    }
    output[idx] = input[in_idx];
  }
}

61
SlicePlugin::SlicePlugin(std::vector<int> starts, std::vector<int> ends,
62 63 64
                         std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::SlicePlugin(void const *serial_data, size_t serial_length) {
  deserializeBase(serial_data, serial_length);
  DeserializeValue(&serial_data, &serial_length, &starts_);
  DeserializeValue(&serial_data, &serial_length, &ends_);
  DeserializeValue(&serial_data, &serial_length, &axes_);
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::~SlicePlugin() {
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
}

SlicePlugin *SlicePlugin::clone() const {
85
  return new SlicePlugin(starts_, ends_, axes_, with_fp16_);
86 87 88 89
}

bool SlicePlugin::supportsFormat(nvinfer1::DataType type,
                                 nvinfer1::PluginFormat format) const {
90 91 92 93 94 95 96 97
  if (with_fp16_) {
    return ((type == nvinfer1::DataType::kFLOAT ||
             type == nvinfer1::DataType::kHALF) &&
            (format == nvinfer1::PluginFormat::kNCHW));
  } else {
    return ((type == nvinfer1::DataType::kFLOAT) &&
            (format == nvinfer1::PluginFormat::kNCHW));
  }
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
}

nvinfer1::Dims SlicePlugin::getOutputDimensions(int index,
                                                const nvinfer1::Dims *inputs,
                                                int nb_input_dims) {
  auto in_dims = inputs[0];
  nvinfer1::Dims out_dims = in_dims;
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    out_dims.d[axes_[i] - 1] = end - start;
  }
  return out_dims;
}

int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
114
#if IS_TRT_VERSION_LT(8000)
115
                         void **outputs, void *workspace, cudaStream_t stream) {
116 117 118 119
#else
                         void *const *outputs, void *workspace,
                         cudaStream_t stream) {
#endif
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  auto input_dims = getInputDims(0);

  // notice input dims is [C, H, W], add input batch dim here
  auto out_dims = getOutputDimensions(0, &input_dims, 1);
  input_dims.nbDims += 1;
  out_dims.nbDims += 1;
  for (auto i = input_dims.nbDims; i > 0; --i) {
    input_dims.d[i] = input_dims.d[i - 1];
    out_dims.d[i] = out_dims.d[i - 1];
  }
  input_dims.d[0] = batch_size;
  out_dims.d[0] = batch_size;

  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }
  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }

  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);

  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = getDataType();
  if (input_type == nvinfer1::DataType::kFLOAT) {
178
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
179 180 181 182 183
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
184
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
185 186 187 188 189 190 191 192 193 194 195 196 197 198
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}

size_t SlicePlugin::getSerializationSize() {
  return getBaseSerializationSize() + SerializedSize(getPluginType()) +
         SerializedSize(starts_) + SerializedSize(ends_) +
199
         SerializedSize(axes_);
200 201 202 203 204 205 206 207 208 209 210 211 212 213
}

void SlicePlugin::serialize(void *buffer) {
  SerializeValue(&buffer, getPluginType());
  serializeBase(buffer);
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
}

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
SlicePluginDynamic::SlicePluginDynamic(std::vector<int> starts,
                                       std::vector<int> ends,
214 215 216
                                       std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
217 218 219 220 221 222 223 224 225
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePluginDynamic::SlicePluginDynamic(void const *serialData,
                                       size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &starts_);
  DeserializeValue(&serialData, &serialLength, &ends_);
  DeserializeValue(&serialData, &serialLength, &axes_);
226
  DeserializeValue(&serialData, &serialLength, &with_fp16_);
227 228 229 230 231 232 233 234 235 236 237
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

void SlicePluginDynamic::destroy() {
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
  delete this;
}

238 239
int SlicePluginDynamic::initialize() { return 0; }

240 241
size_t SlicePluginDynamic::getSerializationSize() const {
  size_t size = SerializedSize(starts_) + SerializedSize(ends_) +
242
                SerializedSize(axes_) + SerializedSize(with_fp16_);
243

244 245 246 247 248 249 250
  return size;
}

void SlicePluginDynamic::serialize(void *buffer) const {
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
251
  SerializeValue(&buffer, with_fp16_);
252
}
253 254 255 256 257

nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
    nvinfer1::IExprBuilder &expr_builder) {
  auto in_dims = inputs[0];
258
  nvinfer1::DimsExprs ret = in_dims;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  // start, ends should greater 0
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    ret.d[axes_[i]] = expr_builder.constant(end - start);
  }
  return ret;
}

bool SlicePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
    int nb_outputs) {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
283
    if (with_fp16_) {
284 285 286
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
287 288 289
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    }
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SlicePluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Slice Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT ||
                     input_types[0] == nvinfer1::DataType::kHALF),
                    true, platform::errors::InvalidArgument(
                              "The input type should be half or float"));
  return input_types[0];
}

int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                const nvinfer1::PluginTensorDesc *output_desc,
                                const void *const *inputs, void *const *outputs,
                                void *workspace, cudaStream_t stream) {
  auto input_dims = input_desc[0].dims;
  auto out_dims = output_desc[0].dims;
  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

323 324 325
  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }

  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

347 348 349
  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }
350

351 352 353
  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);
354

355 356
  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);
357 358 359 360 361

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
362
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
363 364 365
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
366
        out_num, num_dims, input1, offset_temp_data_, output);
367
  } else if (input_type == nvinfer1::DataType::kHALF) {
368
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
369 370 371
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
372
        out_num, num_dims, input1, offset_temp_data_, output);
373 374 375 376 377 378 379 380 381 382 383 384
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle