slice_op_plugin.cu 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <stdio.h>
#include <cassert>
#include <cub/cub.cuh>  // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

template <typename T>
__global__ void SliceKernel(int num, int dims, const T *input,
                            const int *offsets_info, T *output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  extern __shared__ int shared_data[];

34 35
  for (int i = threadIdx.x; i < dims * 3; i += blockDim.x) {
    shared_data[i] = offsets_info[i];
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  }
  __syncthreads();

  if (idx < num) {
    int t_idx = idx;
    int in_idx = 0;
    for (int i = dims - 1; i >= 0; i--) {
      // output_shape
      auto t = t_idx % shared_data[i * 3 + 1];
      // out offset
      auto s = t + shared_data[i * 3];
      // input_seg_offset
      in_idx = in_idx + shared_data[i * 3 + 2] * s;
      t_idx = t_idx / shared_data[i * 3 + 1];
    }
    output[idx] = input[in_idx];
  }
}

55
SlicePlugin::SlicePlugin(std::vector<int> starts, std::vector<int> ends,
56 57 58
                         std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::SlicePlugin(void const *serial_data, size_t serial_length) {
  deserializeBase(serial_data, serial_length);
  DeserializeValue(&serial_data, &serial_length, &starts_);
  DeserializeValue(&serial_data, &serial_length, &ends_);
  DeserializeValue(&serial_data, &serial_length, &axes_);
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePlugin::~SlicePlugin() {
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
}

78
SlicePlugin *SlicePlugin::clone() const TRT_NOEXCEPT {
79
  return new SlicePlugin(starts_, ends_, axes_, with_fp16_);
80 81
}

82 83
bool SlicePlugin::supportsFormat(
    nvinfer1::DataType type, nvinfer1::PluginFormat format) const TRT_NOEXCEPT {
84 85 86
  if (with_fp16_) {
    return ((type == nvinfer1::DataType::kFLOAT ||
             type == nvinfer1::DataType::kHALF) &&
87
            (format == nvinfer1::PluginFormat::kLINEAR));
88 89
  } else {
    return ((type == nvinfer1::DataType::kFLOAT) &&
90
            (format == nvinfer1::PluginFormat::kLINEAR));
91
  }
92 93
}

94 95
nvinfer1::Dims SlicePlugin::getOutputDimensions(
    int index, const nvinfer1::Dims *inputs, int nb_input_dims) TRT_NOEXCEPT {
96 97 98 99 100 101 102 103 104 105 106
  auto in_dims = inputs[0];
  nvinfer1::Dims out_dims = in_dims;
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    out_dims.d[axes_[i] - 1] = end - start;
  }
  return out_dims;
}

int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
107
#if IS_TRT_VERSION_LT(8000)
108
                         void **outputs, void *workspace, cudaStream_t stream) {
109 110
#else
                         void *const *outputs, void *workspace,
111
                         cudaStream_t stream) TRT_NOEXCEPT {
112
#endif
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  auto input_dims = getInputDims(0);

  // notice input dims is [C, H, W], add input batch dim here
  auto out_dims = getOutputDimensions(0, &input_dims, 1);
  input_dims.nbDims += 1;
  out_dims.nbDims += 1;
  for (auto i = input_dims.nbDims; i > 0; --i) {
    input_dims.d[i] = input_dims.d[i - 1];
    out_dims.d[i] = out_dims.d[i - 1];
  }
  input_dims.d[0] = batch_size;
  out_dims.d[0] = batch_size;

  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }
  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }

  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);

  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = getDataType();
  if (input_type == nvinfer1::DataType::kFLOAT) {
171
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
172 173 174 175 176
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
177
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
178 179 180 181 182 183 184 185 186 187 188
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data_, output);
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}

189
size_t SlicePlugin::getSerializationSize() const TRT_NOEXCEPT {
190 191
  return getBaseSerializationSize() + SerializedSize(getPluginType()) +
         SerializedSize(starts_) + SerializedSize(ends_) +
192
         SerializedSize(axes_);
193 194
}

195
void SlicePlugin::serialize(void *buffer) const TRT_NOEXCEPT {
196 197 198 199 200 201 202 203 204 205 206
  SerializeValue(&buffer, getPluginType());
  serializeBase(buffer);
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
}

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
SlicePluginDynamic::SlicePluginDynamic(std::vector<int> starts,
                                       std::vector<int> ends,
207 208 209
                                       std::vector<int> axes, bool with_fp16)
    : starts_(starts), ends_(ends), axes_(axes) {
  with_fp16_ = with_fp16;
210 211 212 213 214 215 216 217 218
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

SlicePluginDynamic::SlicePluginDynamic(void const *serialData,
                                       size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &starts_);
  DeserializeValue(&serialData, &serialLength, &ends_);
  DeserializeValue(&serialData, &serialLength, &axes_);
219
  DeserializeValue(&serialData, &serialLength, &with_fp16_);
220 221 222 223
  cudaEventCreate(&copy_event_);
  cudaStreamCreate(&copy_stream_);
}

224
void SlicePluginDynamic::destroy() TRT_NOEXCEPT {
225 226 227 228 229 230
  cudaStreamDestroy(copy_stream_);
  cudaEventDestroy(copy_event_);
  cudaFree(offset_temp_data_);
  delete this;
}

231
int SlicePluginDynamic::initialize() TRT_NOEXCEPT { return 0; }
232

233
size_t SlicePluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
234
  size_t size = SerializedSize(starts_) + SerializedSize(ends_) +
235
                SerializedSize(axes_) + SerializedSize(with_fp16_);
236

237 238 239
  return size;
}

240
void SlicePluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
241 242 243
  SerializeValue(&buffer, starts_);
  SerializeValue(&buffer, ends_);
  SerializeValue(&buffer, axes_);
244
  SerializeValue(&buffer, with_fp16_);
245
}
246 247 248

nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
249
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
250
  auto in_dims = inputs[0];
251
  nvinfer1::DimsExprs ret = in_dims;
252 253 254 255 256 257 258 259 260 261 262
  // start, ends should greater 0
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    ret.d[axes_[i]] = expr_builder.constant(end - start);
  }
  return ret;
}

bool SlicePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
263
    int nb_outputs) TRT_NOEXCEPT {
264 265 266 267 268 269 270 271 272 273 274 275
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
276
    if (with_fp16_) {
277 278 279
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
280 281 282
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
283 284 285 286 287 288 289 290
    }
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SlicePluginDynamic::getOutputDataType(
291 292
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
293 294 295 296 297 298 299 300 301 302 303 304 305 306
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Slice Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT ||
                     input_types[0] == nvinfer1::DataType::kHALF),
                    true, platform::errors::InvalidArgument(
                              "The input type should be half or float"));
  return input_types[0];
}

int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                const nvinfer1::PluginTensorDesc *output_desc,
                                const void *const *inputs, void *const *outputs,
307 308
                                void *workspace,
                                cudaStream_t stream) TRT_NOEXCEPT {
309 310 311 312 313 314 315 316 317
  auto input_dims = input_desc[0].dims;
  auto out_dims = output_desc[0].dims;
  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

318 319 320
  offsets.resize(num_dims);
  extends.resize(num_dims);
  seg_offsets.resize(num_dims);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }

  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

342 343 344
  if (offset_temp_data_ == nullptr) {
    cudaMalloc(&offset_temp_data_, 3 * num_dims * sizeof(int));
  }
345

346 347 348
  cudaMemcpyAsync(offset_temp_data_, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice,
                  copy_stream_);
349

350 351
  cudaEventRecord(copy_event_, copy_stream_);
  cudaStreamWaitEvent(stream, copy_event_, 0);
352 353 354 355 356

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
357
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp32";
358 359 360
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
361
        out_num, num_dims, input1, offset_temp_data_, output);
362
  } else if (input_type == nvinfer1::DataType::kHALF) {
363
    VLOG(1) << "TRT Plugin DataType selected. Slice-->fp16";
364 365 366
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
367
        out_num, num_dims, input1, offset_temp_data_, output);
368 369 370 371 372 373 374 375 376 377 378 379
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle