slice_op_plugin.cu 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <stdio.h>
#include <cassert>
#include <cub/cub.cuh>  // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)

template <typename T>
__global__ void SliceKernel(int num, int dims, const T *input,
                            const int *offsets_info, T *output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  extern __shared__ int shared_data[];

  if (threadIdx.x == 0) {
    for (int i = 0; i < dims * 3; i++) {
      shared_data[i] = offsets_info[i];
    }
  }
  __syncthreads();

  if (idx < num) {
    int t_idx = idx;
    int in_idx = 0;
    for (int i = dims - 1; i >= 0; i--) {
      // output_shape
      auto t = t_idx % shared_data[i * 3 + 1];
      // out offset
      auto s = t + shared_data[i * 3];
      // input_seg_offset
      in_idx = in_idx + shared_data[i * 3 + 2] * s;
      t_idx = t_idx / shared_data[i * 3 + 1];
    }
    output[idx] = input[in_idx];
  }
}

int SlicePluginDynamic::initialize() { return 0; }

size_t SlicePluginDynamic::getSerializationSize() const { return 0; }

void SlicePluginDynamic::serialize(void *buffer) const {}

nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
    nvinfer1::IExprBuilder &expr_builder) {
  auto in_dims = inputs[0];
71
  nvinfer1::DimsExprs ret = in_dims;
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  // start, ends should greater 0
  for (size_t i = 0; i < axes_.size(); i++) {
    int start = starts_[i];
    int end = ends_[i];
    ret.d[axes_[i]] = expr_builder.constant(end - start);
  }
  return ret;
}

bool SlicePluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
    int nb_outputs) {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc &in = in_out[pos];
  if (pos == 0) {
#ifdef SUPPORTS_CUDA_FP16
    if (ban_fp16_) {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
    }
#else
    return (in.type == nvinfer1::DataType::kFLOAT) &&
           (in.format == nvinfer1::TensorFormat::kLINEAR);
#endif
  }
  const nvinfer1::PluginTensorDesc &prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SlicePluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Slice Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT ||
                     input_types[0] == nvinfer1::DataType::kHALF),
                    true, platform::errors::InvalidArgument(
                              "The input type should be half or float"));
  return input_types[0];
}

int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                const nvinfer1::PluginTensorDesc *output_desc,
                                const void *const *inputs, void *const *outputs,
                                void *workspace, cudaStream_t stream) {
  auto input_dims = input_desc[0].dims;
  auto out_dims = output_desc[0].dims;
  auto num_dims = input_dims.nbDims;
  size_t out_num = ProductDim(out_dims);

  std::vector<int> seg_offsets;
  std::vector<int> offsets;
  std::vector<int> extends;

  offsets.reserve(num_dims);
  extends.reserve(num_dims);
  seg_offsets.reserve(num_dims);

  seg_offsets[num_dims - 1] = 1;
  for (int i = num_dims - 2; i >= 0; i--) {
    seg_offsets[i] = input_dims.d[i + 1] * seg_offsets[i + 1];
  }

  for (size_t i = 0; i < num_dims; ++i) {
    offsets[i] = 0;
    extends[i] = out_dims.d[i];
  }
  for (size_t i = 0; i < axes_.size(); ++i) {
    offsets[axes_[i]] = starts_[i];
  }

  std::vector<int> offset_info;
  for (size_t i = 0; i < num_dims; ++i) {
    offset_info.push_back(offsets[i]);
    offset_info.push_back(extends[i]);
    offset_info.push_back(seg_offsets[i]);
  }

  framework::Tensor offset_temp_tensor;

  int device_id;
  cudaGetDevice(&device_id);
  offset_temp_tensor.Resize({3 * num_dims});
  auto *offset_temp_data =
      offset_temp_tensor.mutable_data<int>(platform::CUDAPlace(device_id));

  cudaMemcpyAsync(offset_temp_data, offset_info.data(),
                  sizeof(int) * 3 * num_dims, cudaMemcpyHostToDevice, stream);

  int threads = 256;
  int blocks = (out_num + threads - 1) / threads;
  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
    const float *input1 = static_cast<const float *>(inputs[0]);
    float *output = static_cast<float *>(outputs[0]);
    SliceKernel<float><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
#ifdef SUPPORTS_CUDA_FP16
    const half *input1 = static_cast<const half *>(inputs[0]);
    half *output = static_cast<half *>(outputs[0]);
    SliceKernel<half><<<blocks, threads, 3 * num_dims * sizeof(int), stream>>>(
        out_num, num_dims, input1, offset_temp_data, output);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "The cuda archs you specific should greater than 600."));
#endif
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "The Slice TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle