op_test.py 95.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid.framework import _dygraph_tracer
33
import paddle.fluid.core as core
34
from paddle.fluid.framework import _in_eager_mode
35
from paddle.fluid.framework import _test_eager_guard
36 37 38
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
39
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
40 41 42 43 44
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
45
from paddle.fluid import unique_name
46 47 48 49 50 51 52
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
53
from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs
54 55


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


98 99 100 101 102 103 104 105
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


106 107 108 109
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
110
    for i in six.moves.xrange(len(prob)):
111 112 113 114
        prob[i] /= prob_sum[i]
    return prob


115 116
def get_numeric_gradient(place,
                         scope,
117 118 119
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
120
                         output_names,
121
                         delta=0.005,
C
chengduo 已提交
122
                         in_place=False):
Y
Yu Yang 已提交
123
    # FIXME: change this method by compile time concepts
124
    set_input(scope, op, inputs, place)
125 126

    def product(dim):
M
minqiyang 已提交
127
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
128 129

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
130 131
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
132
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
133
        tensor_to_check_dtype = np.float32
134
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
135
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
136 137 138 139
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
140 141
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
142 143 144 145
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
146
    else:
147 148
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
149

C
chengduo 已提交
150 151 152 153
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
154
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
155 156 157
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
158 159 160
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
161 162
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

163 164 165
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
166 167 168 169
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
170 171 172
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
173 174 175 176
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
D
dzhwinter 已提交
177
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
178
            return tensor._get_float_element(i)
179
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
180
            return tensor._get_double_element(i)
181 182 183
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
184 185

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
186 187 188 189 190
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
191
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
192
            tensor.set(numpy_tensor, place)
193 194 195 196 197 198 199
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
200
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
201
            tensor._set_float_element(i, e)
202
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
203
            tensor._set_double_element(i, e)
204 205 206
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
207

208 209
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
210
    for i in six.moves.xrange(tensor_size):
211
        if in_place:
212
            set_input(scope, op, inputs, place)
213 214

        # get one input element throw it's index i.
215
        origin = __get_elem__(tensor_to_check, i)
216 217
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
218
        __set_elem__(tensor_to_check, i, x_pos)
219 220 221
        y_pos = get_output()

        if in_place:
222
            set_input(scope, op, inputs, place)
223 224

        x_neg = origin - delta
225
        __set_elem__(tensor_to_check, i, x_neg)
226 227
        y_neg = get_output()

228
        __set_elem__(tensor_to_check, i, origin)
229 230
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
231
    return gradient_flat.reshape(tensor_to_check.shape())
232 233


234 235
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
236

237
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
238
       cases that do not need to do check_grad. This decorator is used to skip the
239
       check_grad of the above cases.
C
cc 已提交
240 241

       Note: the execution of unit test will not be skipped. It just avoids check_grad
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


258 259 260 261
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


262 263 264 265
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

266 267 268
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
269
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
270

271 272 273
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
274 275


276 277 278
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
279
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
280 281
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
282 283


284
class OpTest(unittest.TestCase):
285 286 287 288 289
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
290
        cls.call_once = False
291
        cls.dtype = None
292
        cls.outputs = {}
293
        cls.input_shape_is_large = True
294 295 296 297

        np.random.seed(123)
        random.seed(124)

298 299 300 301
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
302

303 304
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
305
        """Restore random seeds"""
306 307 308
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

309 310
        _set_use_system_allocator(cls._use_system_allocator)

311 312 313 314
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
315
                if is_mkldnn_op_test():
316 317 318 319 320 321 322 323
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

324 325 326
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
327
        def is_mkldnn_op_test():
328
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
329

330 331 332
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

333 334 335
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

336 337 338
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

339 340
        if not hasattr(cls, "op_type"):
            raise AssertionError(
341 342
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
343

J
juncaipeng 已提交
344 345
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
346
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
347
            if cls.dtype is None or \
348 349
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
350 351 352 353
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

354
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
355 356
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
357
                and not hasattr(cls, 'exist_fp64_check_grad') \
358
                and not is_xpu_op_test() \
359
                and not is_mkldnn_op_test() \
360
                and not is_rocm_op_test() \
361 362
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
363 364 365 366
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

367
            if not cls.input_shape_is_large \
368 369 370 371
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
372

373 374 375 376 377
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

378
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
379 380
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
381
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
382 383 384
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
385
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
Y
Yiqun Liu 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
399

400
    # set the self.output_dtype .
401
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
402 403 404 405
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
406 407 408
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
431 432
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
433 434
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
435 436 437
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
438 439 440
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
441
            if dtype in input_dtype_set:
J
juncaipeng 已提交
442 443
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
444
        # save input dtype in class attr
445
        self.__class__.dtype = self.dtype
446

Y
Yiqun Liu 已提交
447 448 449 450 451 452 453 454
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
455 456 457 458 459 460
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
461
                    if isinstance(np_value, tuple):
462
                        tensor.set(np_value[0], place)
463
                        tensor.set_recursive_sequence_lengths(np_value[1])
464
                    else:
465
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
466 467 468 469
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
470
                    tensor.set(self.inputs[var_name][0], place)
471 472
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
473
                else:
474
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
475 476 477
                feed_map[var_name] = tensor
        return feed_map

478
    def _append_ops(self, block):
J
juncaipeng 已提交
479
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
480
        if self.is_mkldnn_op():
481
            self.__class__.use_mkldnn = True
C
cc 已提交
482

Y
Yiqun Liu 已提交
483
        if self.is_xpu_op():
484 485
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
486
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
487
        "infer datatype from inputs and outputs for this test case"
488 489 490 491 492 493
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
494 495 496 497
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
498 499 500 501 502 503 504 505 506

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
507 508 509 510
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
511
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
512
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
513 514
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
515

516 517
        return op

518 519
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
520
        for name, value in six.iteritems(numpy_inputs):
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
540 541 542 543
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
544
            v = fluid.dygraph.base.to_variable(value=data)
545
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
546 547
            return v
        else:
P
update  
phlrain 已提交
548
            return paddle.to_tensor(value)
M
minqiyang 已提交
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

604 605 606 607 608 609 610 611 612 613 614 615 616
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
617

618 619
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
620 621 622
                    if _in_eager_mode():
                        v.retain_grads()

623
                if has_lod:
624
                    v.value().get_tensor().set_recursive_sequence_lengths(
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            self.assertTrue(
                np.allclose(
                    np_api, np_dyg, equal_nan=False),
                "Output (" + name + ") has diff at " + str(place) + "\nExpect "
                + str(np_dyg) + "\n" + "But Got" + str(np_api) + " in class " +
                self.__class__.__name__)

701 702 703 704
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """ set egr_inps and egr_oups = None if you want to create it by yourself.
        """

705
        def prepare_python_api_arguments(api, op_proto_ins, op_proto_attrs,
706 707 708
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
            """
709 710 711 712 713 714 715

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

716 717 718 719 720
            def get_default(idx, defaults):
                assert not isinstance(
                    defaults[idx], Empty
                ), "%d-th params of python api don't have default value." % idx
                return defaults[idx]
721 722 723 724

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
            def parse_attri_value(name, op_inputs, op_attrs):
                """ parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
                    1. if the name in op_attrs, use the op_attrs[name]
                    2. if the name in op_inputs, convert the op_inputs to [type of default value]
                    3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
                """
                if name in op_proto_attrs:
                    return op_proto_attrs[name]
                elif name in op_inputs:
                    assert op_inputs[name].__len__(
                    ) == 1, "currently don't support multi-input in attribute."
                    # why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
                    # why we reconstruct a tensor: because we want the tensor in cpu. 
                    return paddle.to_tensor(
                        op_inputs[name][0].numpy(), place='cpu')
                else:
                    return Empty()

            # NOTE(xiongkun): the logic of constructing parameters: 
            # for example:  
            #    python api: cumprod(x, dim, dtype=None, name=None) 
            #    kernel sig: [["x"], ["dim"], ["out"]]"
            #
            # we will construct a lot of list with the same length : len == len(api_params), here is 4
            #    api_params = ["x", "dim", "dtype", "name"]
            #    api_defaults = [Empty, Empty, None, None]; empty means no defaults.
            #    inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
            #    input_arguments = [RealValue in self.inputs and self.attrs]
            # then ,we will loop for the api_params, construct a result list: 
            #    if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
            #    else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)

            api_params, api_defaults = parse_arg_and_kwargs(api)
758
            api_defaults = to_defaults_list(api_params, api_defaults)
759 760 761 762 763
            api_defaults = [
                Empty() for i in range(len(api_params) - len(api_defaults))
            ] + api_defaults
            assert len(api_defaults) == len(
                api_params), "Error happens. contack xiongkun03 to solve."
764
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
765 766
            inputs_and_attrs = inputs_sig + attrs_sig
            input_arguments = [op_proto_ins[name] for name in inputs_sig] + [
767
                parse_attri_value(name, op_proto_ins, op_proto_attrs)
768 769 770
                for name in attrs_sig
            ]
            results = []
771 772 773 774 775
            api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
            idx_of_op_proto_arguments = 0
            for idx, arg_name in enumerate(api_params):
                if arg_name in api_ignore_param_list:
                    results.append(get_default(idx, api_defaults))
776
                else:
777 778 779 780 781 782 783 784 785
                    assert idx_of_op_proto_arguments < len(
                        input_arguments), "Assert False."
                    tmp = input_arguments[idx_of_op_proto_arguments]
                    idx_of_op_proto_arguments += 1
                    if isinstance(tmp, Empty):
                        results.append(get_default(idx, api_defaults))
                    else:
                        results.append(tmp)
            assert len(results) == len(api_params)
786
            return results
787 788 789 790

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
791 792 793 794 795 796 797 798 799
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert len(
                    output_sig
                ) == 1, "Don't support multi-output with multi-tensor output."
                return {output_sig[0]: ret_tuple}
800

801
        def assumption_assert_and_transform(args, inp_num):
802
            """
803
            transform inputs by the following rules:
804 805 806 807
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors

            only support "X" is list of Tensor, currently don't support other structure like dict.
808
            """
809
            for inp in args[:inp_num]:
810 811 812
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
813 814 815 816
            args = [
                inp[0] if len(inp) == 1 else inp for inp in args[:inp_num]
            ] + args[inp_num:]
            return args
817

818 819 820 821 822 823 824 825 826 827 828 829
        def _get_kernel_signature(eager_tensor_inputs, eager_tensor_outputs,
                                  attrs_outputs):
            try:
                kernel_sig = _dygraph_tracer()._get_kernel_signature(
                    self.op_type, eager_tensor_inputs, eager_tensor_outputs,
                    attrs_outputs)
            except RuntimeError as re:
                """ we think the kernel_sig is missing.
                """
                kernel_sig = None
            return kernel_sig

830
        def cal_python_api(python_api, args, kernel_sig):
831
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
832 833
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
834 835 836 837 838 839
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
840
            eager_tensor_inputs = egr_inps if egr_inps else self.append_input_output_for_dygraph(
841
                op_proto, self.inputs, True, False, block)
842
            # prepare output variable
843
            eager_tensor_outputs = egr_oups if egr_oups else self.append_input_output_for_dygraph(
844 845 846 847 848 849 850 851 852
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

853 854 855 856
            kernel_sig = _get_kernel_signature(
                eager_tensor_inputs, eager_tensor_outputs, attrs_outputs)
            if not kernel_sig:
                return None
857 858
            assert hasattr(
                self, "python_api"
859
            ), "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True" % self.op_type
860 861
            args = prepare_python_api_arguments(
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig)
862 863
            """ we directly return the cal_python_api value because the value is already tensor. 
            """
864
            return cal_python_api(self.python_api, args, kernel_sig)
865

L
lujun 已提交
866
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
867
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
868
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
869 870
            block = fluid.default_main_program().global_block()

871
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
872

873 874 875
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
876
            # prepare output variable
877 878 879 880 881 882 883 884 885
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
886

M
minqiyang 已提交
887 888 889 890
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
891
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
892
            return outputs
893

894 895 896 897 898 899
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
900
                     for_inplace_test=None):
901 902
        program = Program()
        block = program.global_block()
903
        op = self._append_ops(block)
904 905 906 907 908

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

909
        if for_inplace_test:
C
cc 已提交
910 911
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
912 913
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
914 915
            for out_name in op.output_arg_names:
                var = block.var(out_name)
916 917
                if 0 in var.shape:
                    var.persistable = True
918
        original_program = program
919 920
        if parallel:
            use_cuda = False
921
            if isinstance(place, fluid.CUDAPlace):
922
                use_cuda = True
923 924 925
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
926 927 928 929
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
930
            for var_name, var in six.iteritems(outputs):
931 932
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
933 934
                if isinstance(var, list):
                    for v in var:
935
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
936
                else:
937
                    fetch_list.append(var.name)
938 939 940 941
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
942 943 944 945 946 947 948 949 950

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

951
        executor = Executor(place)
952 953 954 955
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
956 957
        self.op = op
        self.program = original_program
958 959 960 961
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
962

963 964 965 966 967 968 969 970 971
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
972
            place (CPUPlace | CUDAPlace): The place where the op runs.
973 974 975 976 977 978 979 980 981 982
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
983
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
984 985 986
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
987 988
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
989 990 991
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
992
                        expect_out, actual_out, atol=inplace_atol),
993 994
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
995 996
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
997 998
            else:
                self.assertTrue(
999
                    np.array_equal(expect_out, actual_out),
1000 1001
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
1002 1003
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
1004 1005 1006 1007 1008 1009 1010 1011

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1012
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
1039 1040
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1056
            place (CPUPlace | CUDAPlace): The place where the op runs.
1057 1058 1059
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1060
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1092

1093
        Args:
C
cc 已提交
1094 1095
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1096
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1112
                # get grad_op_desc
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1136
        """Check the inplace correctness of given op (self.op_type).
1137
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1138

1139
        Args:
C
cc 已提交
1140
            place (CPUPlace | CUDAPlace): The place where the op runs.
1141 1142 1143 1144
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1145 1146
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1147 1148
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
1159
        # compare expect_outs and actual_outs
1160 1161 1162 1163 1164 1165
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1179
            place (CPUPlace | CUDAPlace): The place where the op runs.
1180 1181 1182 1183 1184 1185 1186 1187 1188
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1189
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1190
                                                                  set(), [])
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1216
        """Check the inplace correctness of given grad_op_desc.
1217 1218 1219 1220 1221 1222

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1223
            place (CPUPlace | CUDAPlace): The place where the op runs.
1224 1225 1226 1227 1228 1229
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1230 1231
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1255
            place (CPUPlace | CUDAPlace): The place where the op runs.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1271 1272
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1286 1287
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1288
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1301
                else:
1302 1303
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1304

1305 1306
    def check_output_with_place(self,
                                place,
1307
                                atol=0,
1308
                                no_check_set=None,
M
minqiyang 已提交
1309
                                equal_nan=False,
1310
                                check_dygraph=True,
1311 1312
                                inplace_atol=None,
                                check_eager=False):
1313 1314 1315 1316 1317
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1318
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1319 1320
            if self.is_mkldnn_op():
                check_dygraph = False
1321
                check_eager = False
Y
Yiqun Liu 已提交
1322 1323 1324 1325 1326
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1327
            else:
1328
                atol = 1e-1
1329

1330 1331 1332 1333
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1334

L
lujun 已提交
1335 1336
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1337
                place, no_check_set=no_check_set)
1338

1339
        if check_eager:
1340
            # we only check end2end api when check_eager=True
1341
            with _test_eager_guard():
1342 1343 1344 1345 1346
                eager_dygraph_outs = self._calc_python_api_output(place)
                if eager_dygraph_outs is None:
                    # missing KernelSignature, fall back to eager middle output.
                    eager_dygraph_outs = self._calc_dygraph_output(
                        place, no_check_set=no_check_set)
1347

1348
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1349

Y
Yang Yang(Tony) 已提交
1350
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1351 1352
            if out_name not in self.outputs:
                continue
1353 1354
            if no_check_set is not None and out_name in no_check_set:
                continue
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1368 1369
            def find_actual(target_name, fetch_list):
                found = [
1370 1371
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1372 1373 1374 1375 1376 1377
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1378 1379
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1380 1381 1382
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1383 1384
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1385
                    if check_dygraph:
1386 1387
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1388 1389
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
1390 1391 1392 1393 1394 1395 1396
                    if check_eager:
                        with _test_eager_guard():
                            eager_imperative_actual = find_imperative_actual(
                                sub_out_name, eager_dygraph_outs, place)
                            eager_imperative_actual_t = eager_imperative_actual.numpy(
                            )

Y
Yang Yang(Tony) 已提交
1397
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1398 1399
                    actual = outs[idx]
                    actual_t = np.array(actual)
1400 1401
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1402 1403
                    self.assertTrue(
                        np.allclose(
1404
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1405 1406
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1407
                    if check_dygraph:
M
minqiyang 已提交
1408 1409 1410 1411 1412 1413 1414
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1415
                            str(place) + " in dygraph mode")
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
                    if check_eager:
                        with _test_eager_guard():
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    equal_nan=equal_nan),
                                "Output (" + sub_out_name + ") has diff at " +
                                str(place) + " in eager dygraph mode")
1426 1427
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1428 1429
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1430
                            ") has different lod at " + str(place))
1431 1432
                        if check_dygraph:
                            self.assertListEqual(
1433
                                imperative_actual.value().get_tensor()
1434 1435 1436 1437
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1438 1439 1440 1441 1442 1443 1444 1445
                        if check_eager:
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1446
            else:
L
lujun 已提交
1447
                if check_dygraph:
1448 1449
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1450 1451
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
1452 1453 1454 1455 1456 1457 1458
                if check_eager:
                    with _test_eager_guard():
                        eager_imperative_actual = find_imperative_actual(
                            out_name, eager_dygraph_outs, place)
                        eager_imperative_actual_t = eager_imperative_actual.numpy(
                        )

Y
Yang Yang(Tony) 已提交
1459
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1460 1461
                actual = outs[idx]
                actual_t = np.array(actual)
1462

1463
                expect = self.outputs[out_name]
1464
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1465

Y
Yiqun Liu 已提交
1466
                # np.uint16 represents bfloat16
1467 1468 1469
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1470
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1471 1472 1473
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1474

1475 1476 1477 1478
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
Y
Yiqun Liu 已提交
1479

1480 1481 1482 1483 1484
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1485 1486
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1487 1488 1489
                        actual_t,
                        expect_t,
                        atol=atol,
Y
Yiqun Liu 已提交
1490
                        rtol=rtol,
W
wuhuanzhou 已提交
1491
                        equal_nan=equal_nan),
E
emailweixu 已提交
1492
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1493
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1494
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1495
                if check_dygraph:
Y
Yiqun Liu 已提交
1496 1497 1498 1499 1500 1501
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
Y
Yiqun Liu 已提交
1513
                                rtol=rtol,
1514 1515 1516 1517 1518
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
                if check_eager:
                    with _test_eager_guard():
                        if self.is_bfloat16_op():
                            if eager_imperative_actual_t.dtype == np.uint16:
                                eager_imperative_actual_t = convert_uint16_to_float(
                                    eager_imperative_actual_t)
                            if expect_t.dtype == np.uint16:
                                expect_t = convert_uint16_to_float(expect_t)
                        if six.moves.reduce(lambda x, y: x * y,
                                            eager_imperative_actual_t.shape,
                                            1) == 0 and six.moves.reduce(
                                                lambda x, y: x * y,
                                                expect_t.shape, 1) == 0:
                            pass
                        else:
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    rtol=rtol,
                                    equal_nan=equal_nan),
                                "Output (" + out_name + ") has diff at " +
                                str(place) + "\nExpect " + str(expect_t) + "\n"
                                + "But Got" + str(eager_imperative_actual_t) +
                                " in class " + self.__class__.__name__)
1545
                if isinstance(expect, tuple):
1546 1547
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1548
                                         ") has different lod at " + str(place))
L
lujun 已提交
1549
                    if check_dygraph:
M
minqiyang 已提交
1550
                        self.assertListEqual(
1551
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1552 1553
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
1554
                            str(place) + " in eager dygraph mode")
P
phlrain 已提交
1555
                    if check_eager:
P
phlrain 已提交
1556 1557 1558 1559 1560 1561 1562 1563
                        with fluid.dygraph.base.guard():
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1564

C
cc 已提交
1565
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1566 1567
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1568
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1569 1570 1571
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1572 1573
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1574 1575
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1576
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1577
        # No effect on original OpTest
1578
        # Currently not support ParallelExecutor on XPUPlace.
1579
        if not paddle.is_compiled_with_xpu(
1580 1581
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1582 1583
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1584

1585 1586 1587
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1635
    def _get_places(self):
D
dzhwinter 已提交
1636 1637 1638 1639 1640 1641
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1642 1643
                else:
                    return []
D
dzhwinter 已提交
1644 1645
            else:
                return []
1646
        places = [fluid.CPUPlace()]
1647 1648 1649
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1650
            places.append(core.CUDAPlace(0))
1651 1652
        return places

M
minqiyang 已提交
1653 1654 1655 1656
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1657
                     check_dygraph=True,
1658 1659
                     inplace_atol=None,
                     check_eager=False):
1660
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1661
        if self.is_mkldnn_op():
1662
            self.__class__.use_mkldnn = True
C
cc 已提交
1663

Y
Yiqun Liu 已提交
1664
        if self.is_xpu_op():
1665 1666
            self.__class__.use_xpu = True

1667
        places = self._get_places()
Q
qijun 已提交
1668
        for place in places:
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1681 1682 1683
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1684
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1685
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1686

P
pangyoki 已提交
1687
    def check_output_customized(self, checker, custom_place=None):
1688
        places = self._get_places()
P
pangyoki 已提交
1689 1690
        if custom_place:
            places.append(custom_place)
1691 1692 1693
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1694
            outs.sort(key=len)
1695 1696
            checker(outs)

1697 1698 1699 1700 1701 1702
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1703 1704
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1705
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1706 1707 1708 1709 1710 1711
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1712
            abs_a = np.abs(a)
1713 1714 1715 1716 1717
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1718 1719
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1720 1721
            else:
                abs_a[abs_a < 1e-3] = 1
1722 1723 1724 1725 1726 1727

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1728 1729 1730
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1731
                    offset, a.flatten()[offset], b.flatten()[offset])
1732 1733 1734

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1735 1736 1737 1738 1739 1740 1741
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1742 1743
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1744
                   output_names,
1745
                   no_grad_set=None,
1746
                   numeric_grad_delta=0.005,
1747
                   in_place=False,
Q
Qiao Longfei 已提交
1748
                   max_relative_error=0.005,
1749
                   user_defined_grads=None,
1750
                   user_defined_grad_outputs=None,
1751 1752
                   check_dygraph=True,
                   check_eager=False):
1753
        self._check_grad_helper()
1754
        places = self._get_places()
1755
        for place in places:
1756
            self.check_grad_with_place(
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1768 1769 1770 1771 1772 1773 1774 1775 1776

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1777
                              user_defined_grads=None,
1778
                              user_defined_grad_outputs=None,
1779
                              check_dygraph=True,
1780 1781
                              numeric_place=None,
                              check_eager=False):
1782
        self.scope = core.Scope()
Q
qijun 已提交
1783
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1784
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1785
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1786

Y
Yiqun Liu 已提交
1787 1788
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1789
            check_dygraph = False
1790
            check_eager = False
1791

1792 1793 1794 1795
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1796

P
phlrain 已提交
1797 1798 1799
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1800 1801 1802 1803 1804 1805 1806

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1807 1808 1809 1810 1811 1812 1813
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1814

1815 1816 1817
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1818 1819
        if no_grad_set is None:
            no_grad_set = set()
1820 1821
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1822 1823 1824
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1825 1826
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1827

1828 1829 1830 1831 1832 1833 1834 1835
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1836 1837 1838
        if not type(output_names) is list:
            output_names = [output_names]

1839 1840 1841
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1842
        numeric_grads = user_defined_grads or [
1843
            get_numeric_gradient(
1844
                numeric_place,
1845 1846 1847 1848
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1849
                output_names,
1850
                delta=numeric_grad_delta,
C
chengduo 已提交
1851
                in_place=in_place) for input_to_check in inputs_to_check
1852
        ]
1853
        analytic_grads = self._get_gradient(inputs_to_check, place,
1854 1855
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1856 1857
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1858
        fp32_analytic_grads = []
1859 1860 1861
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1862
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1863 1864 1865 1866 1867 1868 1869
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1870
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1871 1872
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1873

D
Dun 已提交
1874 1875 1876
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1877

1878
        if check_dygraph:
1879 1880
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
1881
                no_grad_set, False)
1882 1883 1884 1885
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1886
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1887 1888
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1889 1890 1891 1892
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

1893 1894 1895 1896
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check, place, output_names,
1897
                    user_defined_grad_outputs, no_grad_set, check_eager)
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
                fp32_grads = []
                for grad in eager_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                    fp32_grads.append(grad)
                eager_dygraph_grad = fp32_grads
                self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                      inputs_to_check, max_relative_error,
                                      "Gradient Check On %s" % str(place))

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1922
                          user_defined_grad_outputs=None,
1923 1924
                          no_grad_set=None,
                          check_eager=False):
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1944

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
            if check_eager:
                outputs = self._calc_python_api_output(place, inputs, outputs)

            # if outputs is None, kernel sig is empty or other error is happens.
            if not check_eager or outputs is None:
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs_outputs if hasattr(self, "attrs") else None)
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1971 1972 1973 1974 1975
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
2010
                    block.append_op(
2011 2012 2013
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
2014
                        attrs=None)
2015
                    loss = block.create_var(
2016 2017 2018
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2019 2020
                        stop_gradient=False,
                        shape=[1])
2021
                    block.append_op(
2022 2023 2024 2025
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
2026

2027
                loss.backward()
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
2041 2042 2043 2044
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
                if _in_eager_mode():
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
2060

Y
Yu Yang 已提交
2061 2062 2063 2064 2065
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2066
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2067 2068
        return tensor

K
Kexin Zhao 已提交
2069
    @staticmethod
K
Kexin Zhao 已提交
2070 2071
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2072

D
dzhwinter 已提交
2073 2074 2075 2076 2077 2078 2079 2080
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2081 2082 2083 2084 2085
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
2086
                      user_defined_grad_outputs=None,
2087
                      parallel=False):
Y
Yu Yang 已提交
2088
        prog = Program()
2089
        scope = core.Scope()
Y
Yu Yang 已提交
2090
        block = prog.global_block()
2091
        self._append_ops(block)
Y
Yu Yang 已提交
2092

2093
        inputs = self._get_inputs(block)
2094
        outputs = self._get_outputs(block)
2095
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2096

2097
        if user_defined_grad_outputs is None:
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2138
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2139 2140 2141 2142
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2143 2144
        if parallel:
            use_cuda = False
2145
            if isinstance(place, fluid.CUDAPlace):
2146
                use_cuda = True
2147 2148 2149 2150
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2151 2152
        return list(
            map(np.array,
2153 2154 2155 2156 2157
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
2171 2172 2173 2174 2175 2176

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")