op_test.py 59.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import time
24
import itertools
Y
Yu Yang 已提交
25
import collections
M
minqiyang 已提交
26
from collections import defaultdict
27 28 29

import paddle.fluid as fluid
import paddle.fluid.core as core
30 31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
33
from paddle.fluid.framework import Program, OpProtoHolder, Variable
34
from testsuite import create_op, set_input, append_input_output, append_loss_ops
35
from paddle.fluid import unique_name
36
from white_list import op_accuracy_white_list, op_check_grad_white_list, check_shape_white_list, compile_vs_runtime_white_list
37 38


39 40 41 42 43 44 45 46
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


47 48 49 50
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
51
    for i in six.moves.xrange(len(prob)):
52 53 54 55
        prob[i] /= prob_sum[i]
    return prob


56 57
def get_numeric_gradient(place,
                         scope,
58 59 60
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
61
                         output_names,
62
                         delta=0.005,
C
chengduo 已提交
63
                         in_place=False):
Y
Yu Yang 已提交
64
    # FIXME: change this method by compile time concepts
65
    set_input(scope, op, inputs, place)
66 67

    def product(dim):
M
minqiyang 已提交
68
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
69 70

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
71
    tensor_size = product(tensor_to_check.shape())
72 73 74 75
    if not hasattr(get_numeric_gradient, 'check_shape_time'):
        get_numeric_gradient.check_shape_time = 0
    if tensor_size >= 100:
        get_numeric_gradient.check_shape_time += 1
Y
yuyang18 已提交
76
    tensor_to_check_dtype = tensor_to_check._dtype()
77
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
78
        tensor_to_check_dtype = np.float32
79
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
80
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
81 82 83 84
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
85 86 87 88
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
89 90 91 92 93 94 95 96 97
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

98 99 100
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
101 102 103 104 105
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
106
            return tensor._get_float_element(i)
107
        else:
Y
yuyang18 已提交
108
            return tensor._get_double_element(i)
109 110

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
111 112 113 114 115
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
116
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
117 118
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
119
            tensor._set_float_element(i, e)
120
        else:
Y
yuyang18 已提交
121
            tensor._set_double_element(i, e)
122

123 124
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
125
    for i in six.moves.xrange(tensor_size):
126
        if in_place:
127
            set_input(scope, op, inputs, place)
128 129

        # get one input element throw it's index i.
130
        origin = __get_elem__(tensor_to_check, i)
131 132
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
133
        __set_elem__(tensor_to_check, i, x_pos)
134 135 136
        y_pos = get_output()

        if in_place:
137
            set_input(scope, op, inputs, place)
138 139

        x_neg = origin - delta
140
        __set_elem__(tensor_to_check, i, x_neg)
141 142
        y_neg = get_output()

143
        __set_elem__(tensor_to_check, i, origin)
144 145
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
146
    return gradient_flat.reshape(tensor_to_check.shape())
147 148


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
       
       Check_grad is required for Op test cases. However, there are some special
       cases that do not need to do check_grad. This decorator is used to skip the 
       check_grad of the above cases.
       
       Note: the execution of unit test will not be skipped. It just avoids check_grad 
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


173
class OpTest(unittest.TestCase):
174 175 176 177 178
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
179
        cls.call_once = False
180
        cls.dtype = None
181
        cls.outputs = {}
182 183 184 185

        np.random.seed(123)
        random.seed(124)

186 187
        cls._use_system_allocator = _set_use_system_allocator(True)

188 189
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
190
        """Restore random seeds"""
191 192 193
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

194 195
        _set_use_system_allocator(cls._use_system_allocator)

196 197 198 199 200
        if not hasattr(cls, "op_type"):
            raise AssertionError(
                "This test do not have op_type in class attrs,"
                " please set self.__class__.op_type=the_real_op_type manually.")

201 202 203 204 205 206 207
        if hasattr(
                get_numeric_gradient, 'check_shape_time'
        ) and get_numeric_gradient.check_shape_time == 0 and OpTest.op_type not in check_shape_white_list.NOT_CHECK_OP_LIST and OpTest.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
            raise AssertionError(
                "At least one input's shape should be large than or equal to 100 for "
                + OpTest.op_type + " Op.")

208
        # cases and ops do no need check_grad
209
        if hasattr(cls, "no_need_check_grad") \
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            or cls.op_type in op_check_grad_white_list.EMPTY_GRAD_OP_LIST:
            return

        # In order to pass ci, and case in NO_FP64_CHECK_GRAD_CASES and op in
        # NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if cls.op_type in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST:
            return

        if cls.dtype is None or (cls.dtype in [np.float16, np.int64, np.int32, np.int16] \
            and not hasattr(cls, "exist_check_grad")):
            raise AssertionError("This test of %s op needs check_grad." %
                                 cls.op_type)

        if cls.dtype in [np.float32, np.float64] and \
            not hasattr(cls, 'exist_fp64_check_grad'):
            raise AssertionError("This test of %s op needs fp64 check_grad." %
                                 cls.op_type)

228 229 230 231 232 233
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
234 235 236 237
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
238 239 240
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.int16),
268
            np.dtype(np.int8), np.dtype(np.uint8), np.dtype(np.bool)
J
juncaipeng 已提交
269 270 271 272 273 274
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
275 276
        # save dtype in class attr
        self.__class__.dtype = self.dtype
277

Y
Yang Yang(Tony) 已提交
278 279 280 281 282 283
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
284
                    if isinstance(np_value, tuple):
285
                        tensor.set(np_value[0], place)
286
                        tensor.set_recursive_sequence_lengths(np_value[1])
287
                    else:
288
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
289 290 291 292
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
293
                    tensor.set(self.inputs[var_name][0], place)
294 295
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
296
                else:
297
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
298 299 300 301
                feed_map[var_name] = tensor

        return feed_map

302
    def _append_ops(self, block):
J
juncaipeng 已提交
303
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yang Yang(Tony) 已提交
304
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
305 306 307 308 309 310
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
311 312 313 314 315 316 317 318 319

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
320 321 322 323 324
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
325
        # infer variable type and infer shape in compile-time 
Q
QI JUN 已提交
326 327
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
328

329 330
        return op

331 332
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
333
        for name, value in six.iteritems(numpy_inputs):
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
353 354 355 356
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
357
            v = fluid.dygraph.base.to_variable(value=data)
358
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
359 360
            return v
        else:
L
lujun 已提交
361
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
379
                    v.value().get_tensor().set_recursive_sequence_lengths(
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
441
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
442
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
443
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
444 445
            block = fluid.default_main_program().global_block()

446
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
447

448 449 450
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
451 452

            # prepare output variable
453 454 455 456 457 458 459 460 461
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
462 463 464 465
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
466
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
467
            return outputs
468

469 470 471 472 473 474
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
475
                     for_inplace_test=None):
476 477
        program = Program()
        block = program.global_block()
478
        op = self._append_ops(block)
479 480 481 482 483

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

484
        if for_inplace_test:
485 486 487 488
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
489 490
            for out_name in op.output_arg_names:
                var = block.var(out_name)
491 492
                if 0 in var.shape:
                    var.persistable = True
493
        original_program = program
494 495
        if parallel:
            use_cuda = False
496
            if isinstance(place, fluid.CUDAPlace):
497
                use_cuda = True
498 499 500
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
501 502 503 504
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
505
            for var_name, var in six.iteritems(outputs):
506 507
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
508 509
                if isinstance(var, list):
                    for v in var:
510
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
511
                else:
512
                    fetch_list.append(var.name)
513 514 515 516
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
517 518 519 520 521 522 523 524 525

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

526
        executor = Executor(place)
527 528 529 530
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
531 532
        self.op = op
        self.program = original_program
533 534 535 536
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
L
Leo Chen 已提交
558 559 560 561
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure 
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
                        np.array(expect_outs[i]),
                        np.array(actual_outs[i]),
                        atol=inplace_atol),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__)
            else:
                self.assertTrue(
                    np.array_equal(
                        np.array(expect_outs[i]), np.array(actual_outs[i])),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__ + '\n')

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op. 

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op. 

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
        
        Args:
            op_desc (OpDesc): The op_desc of current op. 
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op. 
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
            
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc 
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
        """Chech the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
        
        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
725 726 727 728 729 730 731 732 733 734
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
735
        # compare expect_outs and actual_outs
736 737 738 739 740 741
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
765
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
766
                                                                  set(), [])
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
        """Chech the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn/ngraph
                # skip op that use_mkldnn and use_ngraph currently
862
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
863 864 865 866 867 868 869 870 871
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                use_ngraph = fluid.core.is_compiled_with_ngraph(
872
                ) and fluid.core.globals()["FLAGS_use_ngraph"]
873 874 875 876 877 878 879 880 881
                if use_ngraph:
                    warnings.warn(
                        "check inplace_grad for ops using ngraph is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
882
                else:
883 884
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
885

886 887 888 889
    def check_output_with_place(self,
                                place,
                                atol,
                                no_check_set=None,
M
minqiyang 已提交
890
                                equal_nan=False,
891
                                check_dygraph=True,
892
                                inplace_atol=None):
L
lujun 已提交
893 894
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
895
                place, no_check_set=no_check_set)
896
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
897
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
898 899
            if out_name not in self.outputs:
                continue
900 901
            if no_check_set is not None and out_name in no_check_set:
                continue
902

903 904 905 906 907 908 909 910 911 912 913 914
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
915 916
            def find_actual(target_name, fetch_list):
                found = [
917 918
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
919 920 921 922 923 924
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

925 926
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
927 928 929
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
930 931
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
932
                    if check_dygraph:
933 934
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
935 936
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
937
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
938 939
                    actual = outs[idx]
                    actual_t = np.array(actual)
940 941
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
942 943
                    self.assertTrue(
                        np.allclose(
944
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
945 946
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
947
                    if check_dygraph:
M
minqiyang 已提交
948 949 950 951 952 953 954
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
955
                            str(place) + " in dygraph mode")
956 957
                    if isinstance(expect, tuple):
                        self.assertListEqual(
958 959
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
960
                            ") has different lod at " + str(place))
961 962
                        if check_dygraph:
                            self.assertListEqual(
963
                                imperative_actual.value().get_tensor()
964 965 966 967
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
968
            else:
L
lujun 已提交
969
                if check_dygraph:
970 971
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
972 973
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
974
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
975 976
                actual = outs[idx]
                actual_t = np.array(actual)
977
                expect = self.outputs[out_name]
978
                expect_t = expect[0] if isinstance(expect, tuple) else expect
979 980
                self.assertTrue(
                    np.allclose(
981
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
982
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
983
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
984
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
985
                if check_dygraph:
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1002
                if isinstance(expect, tuple):
1003 1004
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1005
                                         ") has different lod at " + str(place))
L
lujun 已提交
1006
                    if check_dygraph:
M
minqiyang 已提交
1007
                        self.assertListEqual(
1008
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1009 1010
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
1011
                            str(place) + " in dygraph mode")
1012

L
Leo Chen 已提交
1013 1014 1015 1016 1017 1018 1019
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure 
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
        # computation order when multiple threads write the same address. So the 
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1020 1021
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1022 1023
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1024 1025
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest 
1026 1027 1028
        self.check_inplace_output_with_place(
            place, no_check_set=no_check_set, inplace_atol=inplace_atol)

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1077
    def _get_places(self):
D
dzhwinter 已提交
1078 1079 1080 1081 1082 1083
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1084 1085
                else:
                    return []
D
dzhwinter 已提交
1086 1087
            else:
                return []
1088
        places = [fluid.CPUPlace()]
1089
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
1090
        use_ngraph = fluid.core.is_compiled_with_ngraph(
1091
        ) and fluid.core.globals()['FLAGS_use_ngraph']
B
baojun 已提交
1092 1093
        if use_ngraph:
            cpu_only = True
1094 1095
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1096
            places.append(core.CUDAPlace(0))
1097 1098
        return places

M
minqiyang 已提交
1099 1100 1101 1102
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1103
                     check_dygraph=True,
1104
                     inplace_atol=None,
1105
                     check_compile_vs_runtime=True):
1106
        self.__class__.op_type = self.op_type
1107
        places = self._get_places()
Q
qijun 已提交
1108
        for place in places:
1109 1110 1111 1112 1113 1114
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1115 1116 1117
            if check_compile_vs_runtime and (
                    self.op_type not in
                    compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST):
1118
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1119

1120
    def check_output_customized(self, checker):
1121
        places = self._get_places()
1122 1123 1124
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1125
            outs.sort(key=len)
1126 1127
            checker(outs)

D
Dun 已提交
1128 1129
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
1130

M
minqiyang 已提交
1131
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1132 1133 1134 1135 1136 1137 1138 1139
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1140
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
1141 1142 1143
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
1144 1145 1146

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1147 1148 1149 1150 1151 1152 1153
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1154 1155
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1156
                   output_names,
1157
                   no_grad_set=None,
1158
                   numeric_grad_delta=0.005,
1159
                   in_place=False,
Q
Qiao Longfei 已提交
1160
                   max_relative_error=0.005,
1161 1162
                   user_defined_grads=None,
                   check_dygraph=True):
1163
        self._check_grad_helper()
1164
        places = self._get_places()
1165 1166 1167 1168
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
1169
                                       user_defined_grads, check_dygraph)
1170 1171 1172 1173 1174 1175 1176 1177 1178

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1179 1180
                              user_defined_grads=None,
                              check_dygraph=True):
1181
        OpTest.op_type = self.op_type
1182
        self.scope = core.Scope()
Q
qijun 已提交
1183
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1184
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1185
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1186

1187 1188
        self._check_grad_helper()

P
phlrain 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1199

1200 1201 1202
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
1203 1204 1205
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
1206
        numeric_grads = user_defined_grads or [
1207
            get_numeric_gradient(
1208
                place,
1209 1210 1211 1212
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1213
                output_names,
1214
                delta=numeric_grad_delta,
C
chengduo 已提交
1215
                in_place=in_place) for input_to_check in inputs_to_check
1216
        ]
1217 1218
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)
D
Dun 已提交
1219 1220 1221
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        if check_dygraph:
            dygraph_grad = self._get_dygraph_grad(inputs_to_check, place,
                                                  output_names, no_grad_set)
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

            if len(outputs_valid) == 1:
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                for outputs_valid_key in outputs_valid:
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[outputs_valid_key]},
                        outputs={"Out": [loss]},
                        attrs=None)
            else:
                avg_sum = []
                for cur_loss in outputs_valid:
                    cur_avg_loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False)
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[cur_loss]},
                        outputs={"Out": [cur_avg_loss]},
                        attrs=None)
                    avg_sum.append(cur_avg_loss)
                loss_sum = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='sum',
                    inputs={"X": avg_sum},
                    outputs={"Out": loss_sum},
                    attrs=None)
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='scale',
                    inputs={"X": loss_sum},
                    outputs={"Out": loss},
                    attrs={'scale': 1.0 / float(len(avg_sum))})
            loss.backward()

            fetch_list_grad = []
            for inputs_to_check_name in inputs_to_check:
                a = inputs_grad_dict[inputs_to_check_name].gradient()
                fetch_list_grad.append(a)
            return fetch_list_grad

Y
Yu Yang 已提交
1331 1332 1333 1334 1335
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1336
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1337 1338
        return tensor

K
Kexin Zhao 已提交
1339
    @staticmethod
K
Kexin Zhao 已提交
1340 1341
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1342

D
dzhwinter 已提交
1343 1344 1345 1346 1347 1348 1349 1350
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1351 1352 1353 1354 1355 1356
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
1357 1358
        prog = Program()
        block = prog.global_block()
1359 1360
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
1361
        param_grad_list = append_backward(
Y
Yu Yang 已提交
1362 1363
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

1364 1365
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1366 1367

        fetch_list = [g for p, g in param_grad_list]
1368 1369
        if parallel:
            use_cuda = False
1370
            if isinstance(place, fluid.CUDAPlace):
1371
                use_cuda = True
1372 1373 1374 1375
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1376 1377 1378
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))