op_test.py 85.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31 32
import paddle.fluid as fluid
import paddle.fluid.core as core
33
from paddle.fluid.framework import _in_eager_mode
34
from paddle.fluid.framework import _test_eager_guard
35 36 37
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
38
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
39 40 41 42 43
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
44
from paddle.fluid import unique_name
45 46 47 48 49 50 51
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
52 53


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


96 97 98 99 100 101 102 103
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


104 105 106 107
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
108
    for i in six.moves.xrange(len(prob)):
109 110 111 112
        prob[i] /= prob_sum[i]
    return prob


113 114
def get_numeric_gradient(place,
                         scope,
115 116 117
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
118
                         output_names,
119
                         delta=0.005,
C
chengduo 已提交
120
                         in_place=False):
Y
Yu Yang 已提交
121
    # FIXME: change this method by compile time concepts
122
    set_input(scope, op, inputs, place)
123 124

    def product(dim):
M
minqiyang 已提交
125
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
126 127

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
128 129
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
130
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
131
        tensor_to_check_dtype = np.float32
132
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
133
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
134 135 136 137
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
138 139
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
140 141 142 143
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
144
    else:
145 146
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
147

C
chengduo 已提交
148 149 150 151
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
152
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
153 154 155
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
156 157 158
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
159 160
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

161 162 163
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
164 165 166 167
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
168 169 170 171 172
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
            return struct.unpack('<f', struct.pack('<I', numpy_tensor[i]
                                                   << 16))[0]
D
dzhwinter 已提交
173
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
174
            return tensor._get_float_element(i)
175
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
176
            return tensor._get_double_element(i)
177 178 179
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
180 181

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
182 183 184 185 186
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
187
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
188
            tensor.set(numpy_tensor, place)
189 190 191 192 193 194 195
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
196
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
197
            tensor._set_float_element(i, e)
198
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
199
            tensor._set_double_element(i, e)
200 201 202
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
203

204 205
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
206
    for i in six.moves.xrange(tensor_size):
207
        if in_place:
208
            set_input(scope, op, inputs, place)
209 210

        # get one input element throw it's index i.
211
        origin = __get_elem__(tensor_to_check, i)
212 213
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
214
        __set_elem__(tensor_to_check, i, x_pos)
215 216 217
        y_pos = get_output()

        if in_place:
218
            set_input(scope, op, inputs, place)
219 220

        x_neg = origin - delta
221
        __set_elem__(tensor_to_check, i, x_neg)
222 223
        y_neg = get_output()

224
        __set_elem__(tensor_to_check, i, origin)
225 226
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
227
    return gradient_flat.reshape(tensor_to_check.shape())
228 229


230 231
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
232

233
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
234
       cases that do not need to do check_grad. This decorator is used to skip the
235
       check_grad of the above cases.
C
cc 已提交
236 237

       Note: the execution of unit test will not be skipped. It just avoids check_grad
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


254 255 256 257
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


258 259 260 261
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

262 263 264
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
265
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
266

267 268 269
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
270 271


272 273 274 275 276 277
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack('<f', struct.pack('<I', x << 16))[0],
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
278 279


280
class OpTest(unittest.TestCase):
281 282 283 284 285
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
286
        cls.call_once = False
287
        cls.dtype = None
288
        cls.outputs = {}
289
        cls.input_shape_is_large = True
290 291 292 293

        np.random.seed(123)
        random.seed(124)

294 295 296 297
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
298

299 300
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
301
        """Restore random seeds"""
302 303 304
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

305 306
        _set_use_system_allocator(cls._use_system_allocator)

307 308 309 310
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
311
                if is_mkldnn_op_test():
312 313 314 315 316 317 318 319
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

320 321 322
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
323
        def is_mkldnn_op_test():
324
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
325

326 327 328
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

329 330 331
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

332 333 334
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

335 336
        if not hasattr(cls, "op_type"):
            raise AssertionError(
337 338
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
339

J
juncaipeng 已提交
340 341
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
342
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
343
            if cls.dtype is None or \
344 345
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
346 347 348 349
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

350
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
351 352
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
353
                and not hasattr(cls, 'exist_fp64_check_grad') \
354
                and not is_xpu_op_test() \
355
                and not is_mkldnn_op_test() \
356
                and not is_rocm_op_test() \
357 358
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
359 360 361 362
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

363
            if not cls.input_shape_is_large \
364 365 366 367
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
368

369 370 371 372 373
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

374
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
375 376
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
377
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
                getattr(self, 'mkldnn_data_type') is "bfloat16") or (
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
395

396
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
397 398 399 400
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
401 402 403
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
426 427
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
428 429
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
430 431 432
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
433 434 435
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
436
            if dtype in input_dtype_set:
J
juncaipeng 已提交
437 438
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
439
        # save input dtype in class attr
440
        self.__class__.dtype = self.dtype
441

Y
Yiqun Liu 已提交
442 443 444 445 446 447 448 449
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
450 451 452 453 454 455
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
456
                    if isinstance(np_value, tuple):
457
                        tensor.set(np_value[0], place)
458
                        tensor.set_recursive_sequence_lengths(np_value[1])
459
                    else:
460
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
461 462 463 464
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
465
                    tensor.set(self.inputs[var_name][0], place)
466 467
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
468
                else:
469
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
470 471 472
                feed_map[var_name] = tensor
        return feed_map

473
    def _append_ops(self, block):
J
juncaipeng 已提交
474
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
475
        if self.is_mkldnn_op():
476
            self.__class__.use_mkldnn = True
C
cc 已提交
477

Y
Yiqun Liu 已提交
478
        if self.is_xpu_op():
479 480
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
481
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
482 483 484 485 486 487
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
488 489 490 491 492 493 494 495 496

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
497 498 499 500
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
501
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
502
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
503 504
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
505

506 507
        return op

508 509
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
510
        for name, value in six.iteritems(numpy_inputs):
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
530 531 532 533
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
534
            v = fluid.dygraph.base.to_variable(value=data)
535
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
536 537
            return v
        else:
L
lujun 已提交
538
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
539

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
610
                    v.value().get_tensor().set_recursive_sequence_lengths(
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
672
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
673
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
674
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
675 676
            block = fluid.default_main_program().global_block()

677
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
678

679 680 681
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
682 683

            # prepare output variable
684 685 686 687 688 689 690 691 692
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
693 694 695 696
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
697
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
698
            return outputs
699

700 701 702 703 704 705
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
706
                     for_inplace_test=None):
707 708
        program = Program()
        block = program.global_block()
709
        op = self._append_ops(block)
710 711 712 713 714

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

715
        if for_inplace_test:
C
cc 已提交
716 717
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
718 719
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
720 721
            for out_name in op.output_arg_names:
                var = block.var(out_name)
722 723
                if 0 in var.shape:
                    var.persistable = True
724
        original_program = program
725 726
        if parallel:
            use_cuda = False
727
            if isinstance(place, fluid.CUDAPlace):
728
                use_cuda = True
729 730 731
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
732 733 734 735
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
736
            for var_name, var in six.iteritems(outputs):
737 738
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
739 740
                if isinstance(var, list):
                    for v in var:
741
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
742
                else:
743
                    fetch_list.append(var.name)
744 745 746 747
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
748 749 750 751 752 753 754 755 756

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

757
        executor = Executor(place)
758 759 760 761
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
762 763
        self.op = op
        self.program = original_program
764 765 766 767
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
768

769 770 771 772 773 774 775 776 777
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
778
            place (CPUPlace | CUDAPlace): The place where the op runs.
779 780 781 782 783 784 785 786 787 788
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
789
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
790 791 792
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
793 794
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
795 796 797
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
798
                        expect_out, actual_out, atol=inplace_atol),
799 800
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
801 802
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
803 804
            else:
                self.assertTrue(
805
                    np.array_equal(expect_out, actual_out),
806 807
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
808 809
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
810 811 812 813 814 815 816 817

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
818
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
845 846
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
862
            place (CPUPlace | CUDAPlace): The place where the op runs.
863 864 865
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
866
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
898

899
        Args:
C
cc 已提交
900 901
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
902
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
903

904 905 906 907 908 909 910 911 912 913 914 915 916 917
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
918
                # get grad_op_desc
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
942
        """Check the inplace correctness of given op (self.op_type).
943
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
944

945
        Args:
C
cc 已提交
946
            place (CPUPlace | CUDAPlace): The place where the op runs.
947 948 949 950
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
951 952
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
953 954
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
955 956 957 958 959 960 961 962 963 964
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
965
        # compare expect_outs and actual_outs
966 967 968 969 970 971
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
972 973 974 975 976 977 978 979 980 981 982 983 984
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
985
            place (CPUPlace | CUDAPlace): The place where the op runs.
986 987 988 989 990 991 992 993 994
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
995
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
996
                                                                  set(), [])
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1022
        """Check the inplace correctness of given grad_op_desc.
1023 1024 1025 1026 1027 1028

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1029
            place (CPUPlace | CUDAPlace): The place where the op runs.
1030 1031 1032 1033 1034 1035
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1036 1037
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1061
            place (CPUPlace | CUDAPlace): The place where the op runs.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1077 1078
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1092 1093
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1094
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1107
                else:
1108 1109
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1110

1111 1112
    def check_output_with_place(self,
                                place,
1113
                                atol=0,
1114
                                no_check_set=None,
M
minqiyang 已提交
1115
                                equal_nan=False,
1116
                                check_dygraph=True,
1117 1118
                                inplace_atol=None,
                                check_eager=False):
1119 1120 1121 1122 1123
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1124
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1125 1126
            if self.is_mkldnn_op():
                check_dygraph = False
1127
                check_eager = False
Y
Yiqun Liu 已提交
1128 1129 1130 1131 1132
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1133
            else:
Y
Yiqun Liu 已提交
1134
                atol = 1e-2
1135

1136 1137 1138 1139
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1140

L
lujun 已提交
1141 1142
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1143
                place, no_check_set=no_check_set)
1144 1145 1146 1147
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_outs = self._calc_dygraph_output(
                    place, no_check_set=no_check_set)
1148
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1149

Y
Yang Yang(Tony) 已提交
1150
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1151 1152
            if out_name not in self.outputs:
                continue
1153 1154
            if no_check_set is not None and out_name in no_check_set:
                continue
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1168 1169
            def find_actual(target_name, fetch_list):
                found = [
1170 1171
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1172 1173 1174 1175 1176 1177
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1178 1179
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1180 1181 1182
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1183 1184
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1185
                    if check_dygraph:
1186 1187
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1188 1189
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
1190 1191 1192 1193 1194 1195 1196
                    if check_eager:
                        with _test_eager_guard():
                            eager_imperative_actual = find_imperative_actual(
                                sub_out_name, eager_dygraph_outs, place)
                            eager_imperative_actual_t = eager_imperative_actual.numpy(
                            )

Y
Yang Yang(Tony) 已提交
1197
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1198 1199
                    actual = outs[idx]
                    actual_t = np.array(actual)
1200 1201
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1202 1203
                    self.assertTrue(
                        np.allclose(
1204
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1205 1206
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1207
                    if check_dygraph:
M
minqiyang 已提交
1208 1209 1210 1211 1212 1213 1214
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1215
                            str(place) + " in dygraph mode")
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
                    if check_eager:
                        with _test_eager_guard():
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    equal_nan=equal_nan),
                                "Output (" + sub_out_name + ") has diff at " +
                                str(place) + " in eager dygraph mode")
1226 1227
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1228 1229
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1230
                            ") has different lod at " + str(place))
1231 1232
                        if check_dygraph:
                            self.assertListEqual(
1233
                                imperative_actual.value().get_tensor()
1234 1235 1236 1237
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1238 1239 1240 1241 1242 1243 1244 1245
                        if check_eager:
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1246
            else:
L
lujun 已提交
1247
                if check_dygraph:
1248 1249
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1250 1251
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
1252 1253 1254 1255 1256 1257 1258
                if check_eager:
                    with _test_eager_guard():
                        eager_imperative_actual = find_imperative_actual(
                            out_name, eager_dygraph_outs, place)
                        eager_imperative_actual_t = eager_imperative_actual.numpy(
                        )

Y
Yang Yang(Tony) 已提交
1259
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1260 1261
                actual = outs[idx]
                actual_t = np.array(actual)
1262

1263
                expect = self.outputs[out_name]
1264
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1265

Y
Yiqun Liu 已提交
1266
                # np.uint16 represents bfloat16
1267 1268 1269
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1270
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1271 1272 1273
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1274

1275 1276 1277 1278
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
Y
Yiqun Liu 已提交
1279

1280 1281 1282 1283 1284
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1285 1286
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1287 1288 1289
                        actual_t,
                        expect_t,
                        atol=atol,
Y
Yiqun Liu 已提交
1290
                        rtol=rtol,
W
wuhuanzhou 已提交
1291
                        equal_nan=equal_nan),
E
emailweixu 已提交
1292
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1293
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1294
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1295
                if check_dygraph:
Y
Yiqun Liu 已提交
1296 1297 1298 1299 1300 1301
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
Y
Yiqun Liu 已提交
1313
                                rtol=rtol,
1314 1315 1316 1317 1318
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
                if check_eager:
                    with _test_eager_guard():
                        if self.is_bfloat16_op():
                            if eager_imperative_actual_t.dtype == np.uint16:
                                eager_imperative_actual_t = convert_uint16_to_float(
                                    eager_imperative_actual_t)
                            if expect_t.dtype == np.uint16:
                                expect_t = convert_uint16_to_float(expect_t)
                        if six.moves.reduce(lambda x, y: x * y,
                                            eager_imperative_actual_t.shape,
                                            1) == 0 and six.moves.reduce(
                                                lambda x, y: x * y,
                                                expect_t.shape, 1) == 0:
                            pass
                        else:
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    rtol=rtol,
                                    equal_nan=equal_nan),
                                "Output (" + out_name + ") has diff at " +
                                str(place) + "\nExpect " + str(expect_t) + "\n"
                                + "But Got" + str(eager_imperative_actual_t) +
                                " in class " + self.__class__.__name__)
1345
                if isinstance(expect, tuple):
1346 1347
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1348
                                         ") has different lod at " + str(place))
L
lujun 已提交
1349
                    if check_dygraph:
M
minqiyang 已提交
1350
                        self.assertListEqual(
1351
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1352 1353
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
1354 1355 1356 1357 1358 1359 1360 1361 1362
                            str(place) + " in eager dygraph mode")
                    if check_eager:
                        with _test_eager_guard():
                            self.assertListEqual(
                                eager_imperative_actual.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in eager dygraph mode")
1363

C
cc 已提交
1364
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1365 1366
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1367
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1368 1369 1370
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1371 1372
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1373 1374
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1375
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1376
        # No effect on original OpTest
1377
        # Currently not support ParallelExecutor on XPUPlace.
1378
        if not paddle.is_compiled_with_xpu(
1379 1380
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1381 1382
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1383

1384 1385 1386
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1434
    def _get_places(self):
D
dzhwinter 已提交
1435 1436 1437 1438 1439 1440
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1441 1442
                else:
                    return []
D
dzhwinter 已提交
1443 1444
            else:
                return []
1445
        places = [fluid.CPUPlace()]
1446 1447 1448
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1449
            places.append(core.CUDAPlace(0))
1450 1451
        return places

M
minqiyang 已提交
1452 1453 1454 1455
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1456
                     check_dygraph=True,
1457 1458
                     inplace_atol=None,
                     check_eager=False):
1459
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1460
        if self.is_mkldnn_op():
1461
            self.__class__.use_mkldnn = True
C
cc 已提交
1462

Y
Yiqun Liu 已提交
1463
        if self.is_xpu_op():
1464 1465
            self.__class__.use_xpu = True

1466
        places = self._get_places()
Q
qijun 已提交
1467
        for place in places:
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1480 1481 1482
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1483
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1484
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1485

P
pangyoki 已提交
1486
    def check_output_customized(self, checker, custom_place=None):
1487
        places = self._get_places()
P
pangyoki 已提交
1488 1489
        if custom_place:
            places.append(custom_place)
1490 1491 1492
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1493
            outs.sort(key=len)
1494 1495
            checker(outs)

1496 1497 1498 1499 1500 1501
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1502 1503
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1504
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1505 1506 1507 1508 1509 1510
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1511
            abs_a = np.abs(a)
1512 1513 1514 1515 1516
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1517 1518
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1519 1520
            else:
                abs_a[abs_a < 1e-3] = 1
1521 1522 1523 1524 1525 1526

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1527 1528 1529
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1530
                    offset, a.flatten()[offset], b.flatten()[offset])
1531 1532 1533

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1534 1535 1536 1537 1538 1539 1540
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1541 1542
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1543
                   output_names,
1544
                   no_grad_set=None,
1545
                   numeric_grad_delta=0.005,
1546
                   in_place=False,
Q
Qiao Longfei 已提交
1547
                   max_relative_error=0.005,
1548
                   user_defined_grads=None,
1549
                   user_defined_grad_outputs=None,
1550 1551
                   check_dygraph=True,
                   check_eager=False):
1552
        self._check_grad_helper()
1553
        places = self._get_places()
1554
        for place in places:
1555
            self.check_grad_with_place(
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1567 1568 1569 1570 1571 1572 1573 1574 1575

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1576
                              user_defined_grads=None,
1577
                              user_defined_grad_outputs=None,
1578
                              check_dygraph=True,
1579 1580
                              numeric_place=None,
                              check_eager=False):
1581
        self.scope = core.Scope()
Q
qijun 已提交
1582
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1583
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1584
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1585

Y
Yiqun Liu 已提交
1586 1587
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1588
            check_dygraph = False
1589
            check_eager = False
1590

1591 1592 1593 1594
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1595

P
phlrain 已提交
1596 1597 1598
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1599 1600 1601 1602 1603 1604 1605

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1606 1607 1608 1609 1610 1611 1612
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1613

1614 1615 1616
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1617 1618
        if no_grad_set is None:
            no_grad_set = set()
1619 1620
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1621 1622 1623
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1624 1625
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1626

1627 1628 1629 1630 1631 1632 1633 1634
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1635 1636 1637
        if not type(output_names) is list:
            output_names = [output_names]

1638 1639 1640
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1641
        numeric_grads = user_defined_grads or [
1642
            get_numeric_gradient(
1643
                numeric_place,
1644 1645 1646 1647
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1648
                output_names,
1649
                delta=numeric_grad_delta,
C
chengduo 已提交
1650
                in_place=in_place) for input_to_check in inputs_to_check
1651
        ]
1652
        analytic_grads = self._get_gradient(inputs_to_check, place,
1653 1654
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1655 1656
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1657
        fp32_analytic_grads = []
1658 1659 1660
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1661
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1662 1663 1664 1665 1666 1667 1668
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1669
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1670 1671
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1672

D
Dun 已提交
1673 1674 1675
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1676

1677
        if check_dygraph:
1678 1679 1680
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1681 1682 1683 1684
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1685
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1686 1687
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1688 1689 1690 1691
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check, place, output_names,
                    user_defined_grad_outputs, no_grad_set)
                fp32_grads = []
                for grad in eager_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                    fp32_grads.append(grad)
                eager_dygraph_grad = fp32_grads
                self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                      inputs_to_check, max_relative_error,
                                      "Gradient Check On %s" % str(place))

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1721
                          user_defined_grad_outputs=None,
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1763 1764 1765 1766 1767
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1802
                    block.append_op(
1803 1804 1805
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1806
                        attrs=None)
1807
                    loss = block.create_var(
1808 1809 1810
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1811 1812
                        stop_gradient=False,
                        shape=[1])
1813
                    block.append_op(
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1831 1832 1833 1834
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
                if _in_eager_mode():
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
1850

Y
Yu Yang 已提交
1851 1852 1853 1854 1855
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1856
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1857 1858
        return tensor

K
Kexin Zhao 已提交
1859
    @staticmethod
K
Kexin Zhao 已提交
1860 1861
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1862

D
dzhwinter 已提交
1863 1864 1865 1866 1867 1868 1869 1870
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1871 1872 1873 1874 1875
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1876
                      user_defined_grad_outputs=None,
1877
                      parallel=False):
Y
Yu Yang 已提交
1878
        prog = Program()
1879
        scope = core.Scope()
Y
Yu Yang 已提交
1880
        block = prog.global_block()
1881
        self._append_ops(block)
Y
Yu Yang 已提交
1882

1883
        inputs = self._get_inputs(block)
1884
        outputs = self._get_outputs(block)
1885
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1886

1887
        if user_defined_grad_outputs is None:
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1928
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1929 1930 1931 1932
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1933 1934
        if parallel:
            use_cuda = False
1935
            if isinstance(place, fluid.CUDAPlace):
1936
                use_cuda = True
1937 1938 1939 1940
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1941 1942
        return list(
            map(np.array,
1943 1944 1945 1946 1947
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
1961 1962 1963 1964 1965 1966

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")