op_test.py 42.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import time
24
import itertools
Y
Yu Yang 已提交
25
import collections
M
minqiyang 已提交
26
from collections import defaultdict
27 28 29

import paddle.fluid as fluid
import paddle.fluid.core as core
30 31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
33
from paddle.fluid.framework import Program, OpProtoHolder, Variable
34
from testsuite import create_op, set_input, append_input_output, append_loss_ops
35 36


37 38 39 40
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
41
    for i in six.moves.xrange(len(prob)):
42 43 44 45
        prob[i] /= prob_sum[i]
    return prob


46 47
def get_numeric_gradient(place,
                         scope,
48 49 50
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
51
                         output_names,
52
                         delta=0.005,
C
chengduo 已提交
53
                         in_place=False):
Y
Yu Yang 已提交
54
    # FIXME: change this method by compile time concepts
55
    set_input(scope, op, inputs, place)
56 57

    def product(dim):
M
minqiyang 已提交
58
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
59 60

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
61 62
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
63
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
64
        tensor_to_check_dtype = np.float32
65
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
66
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
67 68 69 70
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
71 72 73 74
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
75 76 77 78 79 80 81 82 83
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

84 85 86
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
87 88 89 90 91
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
92
            return tensor._get_float_element(i)
93
        else:
Y
yuyang18 已提交
94
            return tensor._get_double_element(i)
95 96

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
97 98 99 100 101
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
102
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
103 104
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
105
            tensor._set_float_element(i, e)
106
        else:
Y
yuyang18 已提交
107
            tensor._set_double_element(i, e)
108

109 110
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
111
    for i in six.moves.xrange(tensor_size):
112
        if in_place:
113
            set_input(scope, op, inputs, place)
114 115

        # get one input element throw it's index i.
116
        origin = __get_elem__(tensor_to_check, i)
117 118
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
119
        __set_elem__(tensor_to_check, i, x_pos)
120 121 122
        y_pos = get_output()

        if in_place:
123
            set_input(scope, op, inputs, place)
124 125

        x_neg = origin - delta
126
        __set_elem__(tensor_to_check, i, x_neg)
127 128
        y_neg = get_output()

129
        __set_elem__(tensor_to_check, i, origin)
130 131
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
132
    return gradient_flat.reshape(tensor_to_check.shape())
133 134 135


class OpTest(unittest.TestCase):
136 137 138 139 140
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
141 142 143
        cls.call_once = False
        cls.dtype = "float32"
        cls.outputs = {}
144 145 146 147 148 149

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
150
        """Restore random seeds"""
151 152 153
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

154 155 156 157 158 159 160 161 162 163
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
        def infer_dtype(numpy_dict):
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
M
minqiyang 已提交
164
            for var_name, var_value in six.iteritems(numpy_dict):
165 166 167 168 169 170 171 172 173 174 175 176 177 178
                if isinstance(var_value, (np.ndarray, np.generic)):
                    self.try_call_once(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):
                    # the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
                    if len(var_value) > 1 and isinstance(var_value[1], (
                            np.ndarray, np.generic)):
                        instance = var_value[1]
                        self.try_call_once(instance[1].dtype)
                else:
                    self.try_call_once("float32")

        infer_dtype(inputs)
        infer_dtype(outputs)

Y
Yang Yang(Tony) 已提交
179 180 181 182 183 184
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
185
                    if isinstance(np_value, tuple):
186
                        tensor.set(np_value[0], place)
187
                        tensor.set_recursive_sequence_lengths(np_value[1])
188
                    else:
189
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
190 191 192 193
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
194
                    tensor.set(self.inputs[var_name][0], place)
195 196
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
197
                else:
198
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
199 200 201 202
                feed_map[var_name] = tensor

        return feed_map

203
    def _append_ops(self, block):
Y
Yang Yang(Tony) 已提交
204
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
205 206 207 208 209 210
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
211 212 213 214 215 216 217 218 219

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
220 221 222 223 224
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
225
        # infer variable type and infer shape in compile-time 
Q
QI JUN 已提交
226 227
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
228

229 230
        return op

231 232
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
233
        for name, value in six.iteritems(numpy_inputs):
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
253 254 255 256
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
257
            v = fluid.dygraph.base.to_variable(value=data)
M
minqiyang 已提交
258 259 260
            v._ivar.value().get_tensor().set_recursive_sequence_lengths(lod)
            return v
        else:
L
lujun 已提交
261
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
262

L
lujun 已提交
263 264
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
            block = fluid.default_main_program().global_block()

            # prepare input variable
            inputs = defaultdict(list)
            for name, np_value in six.iteritems(self.inputs):
                if not isinstance(np_value, list):
                    np_value = [np_value]

                for i in range(len(np_value)):
                    inputs[name].append(
                        self._create_var_from_numpy(np_value[i]))

            # prepare output variable
            outputs = defaultdict(list)
            for name, np_value in six.iteritems(self.outputs):
                if not isinstance(np_value, list):
                    np_value = [np_value]

                for i in range(len(np_value)):
                    value = np_value[i]
                    if isinstance(value, tuple):
                        v = block.create_var(
                            name="%s_out%d" % (name, i),
                            dtype=value[0].dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        v._ivar.value().get_tensor(
                        ).set_recursive_sequence_lengths(value[1])
                    else:
                        v = block.create_var(
                            name="%s_out%d" % (name, i),
                            dtype=value.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                    outputs[name].append(v)

            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=self.attrs)
            return outputs
309

310 311 312 313 314 315
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
316
                     for_inplace_test=None):
317 318
        program = Program()
        block = program.global_block()
319
        op = self._append_ops(block)
320 321 322 323 324

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

325
        if for_inplace_test:
326 327 328 329
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
330 331
            for out_name in op.output_arg_names:
                var = block.var(out_name)
332 333
                if 0 in var.shape:
                    var.persistable = True
334
        original_program = program
335 336
        if parallel:
            use_cuda = False
337
            if isinstance(place, fluid.CUDAPlace):
338
                use_cuda = True
339 340 341
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
342 343 344 345
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
346
            for var_name, var in six.iteritems(outputs):
347 348
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
349 350
                if isinstance(var, list):
                    for v in var:
351
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
352
                else:
353
                    fetch_list.append(var.name)
354 355 356 357
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
358 359 360 361 362 363 364 365 366

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

367
        executor = Executor(place)
368 369 370 371
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
372 373 374 375
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
                        np.array(expect_outs[i]),
                        np.array(actual_outs[i]),
                        atol=inplace_atol),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__)
            else:
                self.assertTrue(
                    np.array_equal(
                        np.array(expect_outs[i]), np.array(actual_outs[i])),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__ + '\n')

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op. 

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op. 

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
        
        Args:
            op_desc (OpDesc): The op_desc of current op. 
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op. 
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
            
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc 
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
        """Chech the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
        
        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
560 561 562 563 564 565 566 567 568 569
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
570
        # compare expect_outs and actual_outs
571 572 573 574 575 576
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
600
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
601
                                                                  set(), [])
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
        """Chech the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
655

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn/ngraph
                # skip op that use_mkldnn and use_ngraph currently
                flags_use_mkldnn = fluid.core.get_flags_use_mkldnn()
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                use_ngraph = fluid.core.is_compiled_with_ngraph(
                ) and fluid.core.get_flags_use_ngraph()
                if use_ngraph:
                    warnings.warn(
                        "check inplace_grad for ops using ngraph is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
717
                else:
718 719
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
720

721 722 723 724
    def check_output_with_place(self,
                                place,
                                atol,
                                no_check_set=None,
M
minqiyang 已提交
725
                                equal_nan=False,
726 727
                                check_dygraph=False,
                                inplace_atol=None):
L
lujun 已提交
728 729
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
730
                place, no_check_set=no_check_set)
731
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
732
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
733 734
            if out_name not in self.outputs:
                continue
735 736
            if no_check_set is not None and out_name in no_check_set:
                continue
737

Y
Yang Yang(Tony) 已提交
738 739
            def find_actual(target_name, fetch_list):
                found = [
740 741
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
742 743 744 745 746 747
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

748 749
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
750 751 752
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
753 754
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
755 756
                    if check_dygraph:
                        imperative_actual = dygraph_outs[sub_out_name][0]
M
minqiyang 已提交
757 758
                        imperative_actual_t = np.array(
                            imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
759
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
760 761
                    actual = outs[idx]
                    actual_t = np.array(actual)
762 763
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
764 765
                    self.assertTrue(
                        np.allclose(
766
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
767 768
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
769
                    if check_dygraph:
M
minqiyang 已提交
770 771 772 773 774 775 776
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
777
                            str(place) + " in dygraph mode")
778 779
                    if isinstance(expect, tuple):
                        self.assertListEqual(
780 781
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
782
                            ") has different lod at " + str(place))
L
lujun 已提交
783
                    if check_dygraph:
M
minqiyang 已提交
784 785 786 787
                        self.assertListEqual(
                            imperative_actual._ivar.value().get_tensor()
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
788
                            str(place) + " in dygraph mode")
789
            else:
L
lujun 已提交
790 791
                if check_dygraph:
                    imperative_actual = dygraph_outs[out_name][0]
M
minqiyang 已提交
792 793
                    imperative_actual_t = np.array(
                        imperative_actual._ivar.value().get_tensor())
Y
Yang Yang(Tony) 已提交
794
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
795 796
                actual = outs[idx]
                actual_t = np.array(actual)
797
                expect = self.outputs[out_name]
798
                expect_t = expect[0] if isinstance(expect, tuple) else expect
799 800
                self.assertTrue(
                    np.allclose(
801
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
802
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
803
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
804
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
805
                if check_dygraph:
M
minqiyang 已提交
806 807 808 809 810 811 812 813 814 815
                    self.assertTrue(
                        np.allclose(
                            imperative_actual_t,
                            expect_t,
                            atol=atol,
                            equal_nan=equal_nan),
                        "Output (" + out_name + ") has diff at " + str(place) +
                        "\nExpect " + str(expect_t) + "\n" + "But Got" +
                        str(imperative_actual_t) + " in class " +
                        self.__class__.__name__)
816
                if isinstance(expect, tuple):
817 818
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
819
                                         ") has different lod at " + str(place))
L
lujun 已提交
820
                    if check_dygraph:
M
minqiyang 已提交
821 822
                        self.assertListEqual(
                            imperative_actual._ivar.value().get_tensor()
M
minqiyang 已提交
823 824
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
825
                            str(place) + " in dygraph mode")
826

827 828 829 830
        # inplace_atol only used when op doesn't ensure computational consistency
        if inplace_atol is not None:
            warnings.warn(
                "By default, inplace_atol should not be set, please check it")
831 832
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest 
833 834 835
        self.check_inplace_output_with_place(
            place, no_check_set=no_check_set, inplace_atol=inplace_atol)

836
    def _get_places(self):
D
dzhwinter 已提交
837 838 839 840 841 842
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
843 844
                else:
                    return []
D
dzhwinter 已提交
845 846
            else:
                return []
847
        places = [fluid.CPUPlace()]
848
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
849 850
        use_ngraph = fluid.core.is_compiled_with_ngraph(
        ) and fluid.core.get_flags_use_ngraph()
B
baojun 已提交
851 852
        if use_ngraph:
            cpu_only = True
853 854
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
855
            places.append(core.CUDAPlace(0))
856 857
        return places

M
minqiyang 已提交
858 859 860 861
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
862 863
                     check_dygraph=False,
                     inplace_atol=None):
864
        places = self._get_places()
Q
qijun 已提交
865
        for place in places:
M
minqiyang 已提交
866
            self.check_output_with_place(place, atol, no_check_set, equal_nan,
L
lujun 已提交
867
                                         check_dygraph)
Q
qijun 已提交
868

869
    def check_output_customized(self, checker):
870
        places = self._get_places()
871 872 873
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
874
            outs.sort(key=len)
875 876
            checker(outs)

D
Dun 已提交
877 878
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
879

M
minqiyang 已提交
880
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
881 882 883 884 885 886 887 888
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
889
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
890 891 892
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
893 894 895 896 897

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
898
                   output_names,
899
                   no_grad_set=None,
900
                   numeric_grad_delta=0.005,
901
                   in_place=False,
Q
Qiao Longfei 已提交
902
                   max_relative_error=0.005,
C
chengduo 已提交
903
                   user_defined_grads=None):
904
        places = self._get_places()
905 906 907 908
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
C
chengduo 已提交
909
                                       user_defined_grads)
910 911 912 913 914 915 916 917 918

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
C
chengduo 已提交
919
                              user_defined_grads=None):
920
        self.scope = core.Scope()
Q
qijun 已提交
921
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
922
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
923
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
924 925 926 927 928 929 930 931 932 933 934

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
935

936 937 938
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
939 940 941
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
942
        numeric_grads = user_defined_grads or [
943
            get_numeric_gradient(
944
                place,
945 946 947 948
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
949
                output_names,
950
                delta=numeric_grad_delta,
C
chengduo 已提交
951
                in_place=in_place) for input_to_check in inputs_to_check
952
        ]
953 954 955
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)

D
Dun 已提交
956 957 958
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
959

Y
Yu Yang 已提交
960 961 962 963 964
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
965
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
966 967
        return tensor

K
Kexin Zhao 已提交
968
    @staticmethod
K
Kexin Zhao 已提交
969 970
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
971

D
dzhwinter 已提交
972 973 974 975 976 977 978 979
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

980 981 982 983 984 985
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
986 987
        prog = Program()
        block = prog.global_block()
988 989
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
990
        param_grad_list = append_backward(
Y
Yu Yang 已提交
991 992
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

993 994
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
995 996

        fetch_list = [g for p, g in param_grad_list]
997 998
        if parallel:
            use_cuda = False
999
            if isinstance(place, fluid.CUDAPlace):
1000
                use_cuda = True
1001 1002 1003 1004
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1005 1006 1007
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))