tensor_util.h 20.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/eigen.h"
S
Steffy-zxf 已提交
26
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/tensor.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
36

L
Leo Chen 已提交
37
#include "paddle/fluid/memory/memory.h"
38
#include "paddle/phi/core/dense_tensor.h"
39

D
dzhwinter 已提交
40 41 42
namespace paddle {
namespace framework {

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

63 64
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
S
Steffy-zxf 已提交
65
                    const platform::DeviceContext& dev_ctx);
66 67
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
S
Steffy-zxf 已提交
68
                      const platform::DeviceContext& dev_ctx);
69 70
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
S
Steffy-zxf 已提交
71
                      const platform::DeviceContext& dev_ctx,
72 73
                      const size_t& seek,
                      const std::vector<int64_t>& shape);
S
Steffy-zxf 已提交
74

C
chengduo 已提交
75 76 77 78 79 80
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
81 82 83 84
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
                const platform::DeviceContext& ctx,
                Tensor* dst);
C
chengduo 已提交
85 86 87 88 89 90 91 92

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
93 94
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
Y
Yi Wang 已提交
95
                Tensor* dst);
C
chengduo 已提交
96

97 98
void TensorCopySync(const Tensor& src,
                    const platform::Place& dst_place,
F
fengjiayi 已提交
99
                    Tensor* dst);
D
dzhwinter 已提交
100

Y
Yi Wang 已提交
101 102
template <typename T>
void TensorFromVector(const std::vector<T>& src,
103 104
                      const platform::DeviceContext& ctx,
                      Tensor* dst);
Y
Yi Wang 已提交
105 106
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
107

Y
Yi Wang 已提交
108
template <typename T>
109 110
void TensorToVector(const Tensor& src,
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
111 112 113
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
114

115 116
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
Y
Yi Wang 已提交
117
                    const platform::DeviceContext& dev_ctx);
118 119
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
Y
Yi Wang 已提交
120
                      const platform::DeviceContext& dev_ctx);
121 122
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
T
tangwei12 已提交
123
                      const platform::DeviceContext& dev_ctx,
124 125
                      const size_t& seek,
                      const std::vector<int64_t>& shape);
D
dzhwinter 已提交
126

6
633WHU 已提交
127 128 129
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
130 131 132
//
// The implementation of template functions.
//
D
dzhwinter 已提交
133

134
template <typename T>
135 136 137 138
void TensorFromArray(const T* src,
                     const size_t& array_size,
                     const platform::DeviceContext& ctx,
                     Tensor* dst) {
139 140 141 142 143 144 145 146
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
147
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
148
  }
149
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
150
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
151 152 153 154 155 156
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
157 158
  }
#endif
159 160 161 162 163 164 165
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
166
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
167 168 169 170
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
171 172 173 174 175
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
176 177 178 179 180 181 182 183
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
184
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
185 186 187 188 189
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
190 191 192 193 194
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
195 196 197
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
198 199 200 201 202
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
203 204 205 206 207 208 209
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromArray on %s is not supported.", dst_place));
  }
210
}
211

D
dzhwinter 已提交
212
template <typename T>
Y
Yi Wang 已提交
213
void TensorFromVector(const std::vector<T>& src,
214 215
                      const platform::DeviceContext& ctx,
                      Tensor* dst) {
D
dzhwinter 已提交
216 217 218 219 220 221 222 223
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
224
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
D
dzhwinter 已提交
225
  }
226
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
227
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
228 229 230 231 232 233
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
D
dzhwinter 已提交
234 235
  }
#endif
236
#ifdef PADDLE_WITH_ASCEND_CL
237 238 239 240 241 242
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
243
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
244
    //  1. vector -> npu pinned tensor
245
    Tensor npu_pinned_tensor(dst->dtype());
246 247 248 249 250 251 252
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
253 254 255 256 257
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
258 259 260 261 262 263 264 265
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
266
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
267 268 269
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
270 271
  }
#endif
F
fwenguang 已提交
272
#ifdef PADDLE_WITH_MLU
F
fwenguang 已提交
273
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
274
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
F
fwenguang 已提交
275 276
  }
#endif
277 278 279
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
280 281 282 283 284
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
285 286
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
287 288 289 290 291
#endif
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
292 293 294 295 296
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
D
dzhwinter 已提交
297 298
}

299 300 301 302
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
303 304
                             const platform::DeviceContext& ctx,
                             Tensor* dst) {
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
321
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
322 323 324
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
325 326 327 328 329 330
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
331 332 333 334
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
335 336 337 338 339
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
340
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
341 342 343 344
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
345 346 347 348 349
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
350 351 352 353 354 355 356 357
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
358
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
359 360 361
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
362 363
  }
#endif
364 365 366 367 368 369
#ifdef PADDLE_WITH_CUSTOM_DEICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
370 371 372 373 374
#endif
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
375 376 377 378 379
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
380 381 382
  delete[] array;
}

D
dzhwinter 已提交
383
template <typename T>
Y
Yi Wang 已提交
384
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
385 386 387 388 389 390 391 392 393 394
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
412
template <typename T>
413 414
void TensorToVector(const Tensor& src,
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
415
                    std::vector<T>* dst) {
D
dzhwinter 已提交
416 417 418 419 420 421 422 423
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
424
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
425
  }
426
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
427
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
L
Leo Chen 已提交
428 429 430 431 432 433
    memory::Copy(dst_place,
                 dst_ptr,
                 src.place(),
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
D
dzhwinter 已提交
434 435
  }
#endif
436 437
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
438
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
439 440
  }
#endif
441 442
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
443
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
444 445
  }
#endif
F
fwenguang 已提交
446 447 448
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
449 450 451 452 453
        dst_place,
        dst_ptr,
        src.place(),
        src_ptr,
        size,
F
fwenguang 已提交
454 455 456
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
457 458 459 460 461 462 463 464 465
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorToVector on %s is not supported.", src.place()));
  }
D
dzhwinter 已提交
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
482
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
483
  }
484
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
485
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
L
Leo Chen 已提交
486 487 488 489 490 491
    memory::Copy(dst_place,
                 dst_ptr,
                 src.place(),
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
492 493
  }
#endif
494 495
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
496
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
497 498
  }
#endif
499 500
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
501
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
502
  }
F
fwenguang 已提交
503 504 505
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
506
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
F
fwenguang 已提交
507
  }
508 509 510 511 512
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
513 514 515 516 517 518 519
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
520
template <typename T>
Y
Yi Wang 已提交
521
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
522 523 524 525 526 527 528
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

529
  PADDLE_ENFORCE_EQ(
530 531
      platform::is_cpu_place(src.place()),
      true,
532 533 534
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
535

536
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
537
}
538

539 540 541 542 543 544 545 546 547 548 549 550
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
551 552
      platform::is_cpu_place(src.place()),
      true,
553 554 555 556
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

557
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
558 559 560 561 562 563 564

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

565 566
std::ostream& operator<<(std::ostream& os, const LoD& lod);

L
Leo Chen 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
  int rank = src.dims().size();
  PADDLE_ENFORCE_GE(
      rank,
      2,
      platform::errors::InvalidArgument(
          "'ReshapeToMatrix()' is only used for flatten high rank "
          "tensors to matrixs. The dimensions of Tensor must be "
          "greater or equal than 2. "
          "But received dimensions of Tensor is %d",
          rank));
  if (rank == 2) {
    return src;
  }
  Tensor res;
  res.ShareDataWith(src);
  res.Resize(phi::flatten_to_2d(src.dims(), num_col_dims));
  return res;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
template <typename T>
inline T GetValue(const framework::Tensor* x) {
  T value = static_cast<T>(0);
  if (!platform::is_cpu_place(x->place())) {
    framework::Tensor cpu_x;
    framework::TensorCopy(*x, platform::CPUPlace(), &cpu_x);
#if defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU)
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    const platform::DeviceContext* dev_ctx = pool.Get(x->place());
    dev_ctx->Wait();
#endif
    value = cpu_x.data<T>()[0];
  } else {
    value = x->data<T>()[0];
  }
  return value;
}

D
dzhwinter 已提交
605 606
}  // namespace framework
}  // namespace paddle
607

608
namespace phi {
609 610
std::ostream& operator<<(std::ostream& os, const DenseTensor& t);
}