tensor_util.h 19.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/eigen.h"
S
Steffy-zxf 已提交
26
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/tensor.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
36

37
#include "paddle/phi/core/dense_tensor.h"
38

D
dzhwinter 已提交
39 40 41
namespace paddle {
namespace framework {

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

62 63
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
S
Steffy-zxf 已提交
64
                    const platform::DeviceContext& dev_ctx);
65 66
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
S
Steffy-zxf 已提交
67
                      const platform::DeviceContext& dev_ctx);
68 69
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
S
Steffy-zxf 已提交
70
                      const platform::DeviceContext& dev_ctx,
71 72
                      const size_t& seek,
                      const std::vector<int64_t>& shape);
S
Steffy-zxf 已提交
73

C
chengduo 已提交
74 75 76 77 78 79
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
80 81 82 83
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
                const platform::DeviceContext& ctx,
                Tensor* dst);
C
chengduo 已提交
84 85 86 87 88 89 90 91

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
92 93
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
Y
Yi Wang 已提交
94
                Tensor* dst);
C
chengduo 已提交
95

96 97
void TensorCopySync(const Tensor& src,
                    const platform::Place& dst_place,
F
fengjiayi 已提交
98
                    Tensor* dst);
D
dzhwinter 已提交
99

Y
Yi Wang 已提交
100 101
template <typename T>
void TensorFromVector(const std::vector<T>& src,
102 103
                      const platform::DeviceContext& ctx,
                      Tensor* dst);
Y
Yi Wang 已提交
104 105
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
106

Y
Yi Wang 已提交
107
template <typename T>
108 109
void TensorToVector(const Tensor& src,
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
110 111 112
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
113

114
// copy the result bool to cpu
Y
Yi Wang 已提交
115 116
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
117 118 119 120 121 122
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
123

124 125
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
Y
Yi Wang 已提交
126
                    const platform::DeviceContext& dev_ctx);
127 128
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
Y
Yi Wang 已提交
129
                      const platform::DeviceContext& dev_ctx);
130 131
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
T
tangwei12 已提交
132
                      const platform::DeviceContext& dev_ctx,
133 134
                      const size_t& seek,
                      const std::vector<int64_t>& shape);
D
dzhwinter 已提交
135

J
Jack Zhou 已提交
136 137 138 139 140 141 142
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
143 144 145
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
146 147 148
//
// The implementation of template functions.
//
D
dzhwinter 已提交
149

150
template <typename T>
151 152 153 154
void TensorFromArray(const T* src,
                     const size_t& array_size,
                     const platform::DeviceContext& ctx,
                     Tensor* dst) {
155 156 157 158 159 160 161 162
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
163
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
164
  }
165
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
166 167
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
168 169 170 171 172
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
173 174 175
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
176 177 178 179 180 181 182
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
183
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
184 185 186 187
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
188 189 190 191 192
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
193 194 195 196 197 198 199 200
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
201
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
202 203 204 205 206
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
207 208 209 210 211
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
212 213 214
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
215 216 217 218 219
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
220 221 222 223 224 225 226
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromArray on %s is not supported.", dst_place));
  }
227
}
228

D
dzhwinter 已提交
229
template <typename T>
Y
Yi Wang 已提交
230
void TensorFromVector(const std::vector<T>& src,
231 232
                      const platform::DeviceContext& ctx,
                      Tensor* dst) {
D
dzhwinter 已提交
233 234 235 236 237 238 239 240
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
241
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
D
dzhwinter 已提交
242
  }
243
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
244 245
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
246 247 248 249 250
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
D
dzhwinter 已提交
251 252 253
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
254
#ifdef PADDLE_WITH_ASCEND_CL
255 256 257 258 259 260
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
261
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
262
    //  1. vector -> npu pinned tensor
263
    Tensor npu_pinned_tensor(dst->dtype());
264 265 266 267 268 269 270
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
271 272 273 274 275
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
276 277 278 279 280 281 282 283
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
284
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
285 286 287
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
288 289
  }
#endif
F
fwenguang 已提交
290
#ifdef PADDLE_WITH_MLU
F
fwenguang 已提交
291
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
292
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
F
fwenguang 已提交
293 294
  }
#endif
295 296 297
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
298 299 300 301 302
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
303 304 305 306 307 308 309
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
D
dzhwinter 已提交
310 311
}

312 313 314 315
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
316 317
                             const platform::DeviceContext& ctx,
                             Tensor* dst) {
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
334
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
335 336 337 338
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
339 340 341 342 343
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
344 345 346 347 348
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
349 350 351 352 353
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
354
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
355 356 357 358
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
359 360 361 362 363
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
364 365 366 367 368 369 370 371
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
372
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
373 374 375
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
376 377
  }
#endif
378 379 380 381 382 383 384 385 386 387 388
#ifdef PADDLE_WITH_CUSTOM_DEICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
389 390 391
  delete[] array;
}

D
dzhwinter 已提交
392
template <typename T>
Y
Yi Wang 已提交
393
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
394 395 396 397 398 399 400 401 402 403
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
421
template <typename T>
422 423
void TensorToVector(const Tensor& src,
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
424
                    std::vector<T>* dst) {
D
dzhwinter 已提交
425 426 427 428 429 430 431 432
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
433
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
434
  }
435
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
436 437
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
438 439 440 441 442
        dst_place,
        dst_ptr,
        src.place(),
        src_ptr,
        size,
D
dzhwinter 已提交
443 444 445
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
446 447
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
448
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
449 450
  }
#endif
451 452
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
453
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
454 455
  }
#endif
F
fwenguang 已提交
456 457 458
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
459 460 461 462 463
        dst_place,
        dst_ptr,
        src.place(),
        src_ptr,
        size,
F
fwenguang 已提交
464 465 466
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
467 468 469 470 471 472 473 474 475
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorToVector on %s is not supported.", src.place()));
  }
D
dzhwinter 已提交
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
492
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
493
  }
494
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
495 496
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
497 498 499 500 501
        dst_place,
        dst_ptr,
        src.place(),
        src_ptr,
        size,
502 503 504
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
505 506
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
507
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
508 509
  }
#endif
510 511
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
512
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
513
  }
F
fwenguang 已提交
514 515 516
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
517
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
F
fwenguang 已提交
518
  }
519 520 521 522 523
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
524 525 526 527 528 529 530
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
531
template <typename T>
Y
Yi Wang 已提交
532
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
533 534 535 536 537 538 539
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

540
  PADDLE_ENFORCE_EQ(
541 542
      platform::is_cpu_place(src.place()),
      true,
543 544 545
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
546

547
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
548
}
549

550 551 552 553 554 555 556 557 558 559 560 561
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
562 563
      platform::is_cpu_place(src.place()),
      true,
564 565 566 567
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

568
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
569 570 571 572 573 574 575

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

576 577
std::ostream& operator<<(std::ostream& os, const LoD& lod);

D
dzhwinter 已提交
578 579
}  // namespace framework
}  // namespace paddle
580

581
namespace phi {
582 583
std::ostream& operator<<(std::ostream& os, const DenseTensor& t);
}