tensor_util.h 17.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/eigen.h"
S
Steffy-zxf 已提交
26
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/tensor.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
36

37 38
#include "paddle/pten/core/dense_tensor.h"

D
dzhwinter 已提交
39 40 41
namespace paddle {
namespace framework {

42 43 44
std::ostream& operator<<(std::ostream& os, const LoD& lod);
std::ostream& operator<<(std::ostream& os, const Tensor& t);

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

S
Steffy-zxf 已提交
65 66 67 68 69 70 71 72
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);

C
chengduo 已提交
73 74 75 76 77 78
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
W
wanghuancoder 已提交
79 80
class Tensor;

Y
Yi Wang 已提交
81
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
82
                const platform::DeviceContext& ctx, Tensor* dst);
83 84
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, pten::DenseTensor* dst);
C
chengduo 已提交
85 86 87 88 89 90 91 92

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
93 94
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
95 96
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                pten::DenseTensor* dst);
C
chengduo 已提交
97

F
fengjiayi 已提交
98 99
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
100

Y
Yi Wang 已提交
101 102 103 104 105
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
106

Y
Yi Wang 已提交
107 108 109 110 111
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
112

113
// copy the result bool to cpu
Y
Yi Wang 已提交
114 115
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
116 117 118 119 120 121
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
122

Y
Yi Wang 已提交
123 124 125 126
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
T
tangwei12 已提交
127 128 129
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);
D
dzhwinter 已提交
130

J
Jack Zhou 已提交
131 132 133 134 135 136 137
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
138 139 140
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
141 142 143
//
// The implementation of template functions.
//
D
dzhwinter 已提交
144

145 146 147 148 149 150 151 152 153 154 155
template <typename T>
void TensorFromArray(const T* src, const size_t& array_size,
                     const platform::DeviceContext& ctx, Tensor* dst) {
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
156
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
157
  }
158
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
159 160
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
161
        dst_place, dst_ptr, src_place, src_ptr, size,
162 163 164
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
165 166 167 168 169 170 171 172 173 174 175 176
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
177
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
178 179 180 181 182 183 184 185
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
186
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
187 188 189 190 191
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
192
}
193

D
dzhwinter 已提交
194
template <typename T>
Y
Yi Wang 已提交
195 196
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
197 198 199 200 201 202 203 204
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
205
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
D
dzhwinter 已提交
206
  }
207
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
208 209
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
210
        dst_place, dst_ptr, src_place, src_ptr, size,
D
dzhwinter 已提交
211 212 213
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
214
#ifdef PADDLE_WITH_ASCEND_CL
215 216 217 218 219 220
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
221
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
222 223 224 225 226 227 228 229 230
    //  1. vector -> npu pinned tensor
    Tensor npu_pinned_tensor(dst->type());
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
231
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
232 233 234 235 236 237 238 239
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
240
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
241 242 243
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
244 245
  }
#endif
F
fwenguang 已提交
246 247 248
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(dst_place)) {
    memory::Copy(
249
        dst_place, dst_ptr, src_place, src_ptr, size,
F
fwenguang 已提交
250 251 252
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
D
dzhwinter 已提交
253 254
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
                             const platform::DeviceContext& ctx, Tensor* dst) {
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
276
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
277 278 279 280
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
281
        dst_place, dst_ptr, src_place, src_ptr, size,
282 283 284 285 286
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
287 288 289 290 291 292 293 294 295 296
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
297
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
298 299 300 301 302 303 304 305
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
306
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
307 308 309
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
310 311 312 313 314
  }
#endif
  delete[] array;
}

D
dzhwinter 已提交
315
template <typename T>
Y
Yi Wang 已提交
316
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
317 318 319 320 321 322 323 324 325 326
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
344
template <typename T>
Y
Yi Wang 已提交
345 346
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
347 348 349 350 351 352 353 354
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
355
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
356
  }
357
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
358 359
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
360
        dst_place, dst_ptr, src.place(), src_ptr, size,
D
dzhwinter 已提交
361 362 363
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
364 365
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
366
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
367 368
  }
#endif
369 370
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
371
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
372 373
  }
#endif
F
fwenguang 已提交
374 375 376
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
377
        dst_place, dst_ptr, src.place(), src_ptr, size,
F
fwenguang 已提交
378 379 380
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
D
dzhwinter 已提交
381 382
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
397
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
398
  }
399
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
400 401
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
402
        dst_place, dst_ptr, src.place(), src_ptr, size,
403 404 405
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
406 407
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
408
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
409 410
  }
#endif
411 412
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
413
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
414
  }
F
fwenguang 已提交
415 416 417 418
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
419
        dst_place, dst_ptr, src.place(), src_ptr, size,
F
fwenguang 已提交
420 421
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
422 423 424 425 426 427 428
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
429
template <typename T>
Y
Yi Wang 已提交
430
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
431 432 433 434 435 436 437
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

438 439 440 441 442
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
443

444
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
445
}
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

464
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
465 466 467 468 469 470 471

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
472 473
}  // namespace framework
}  // namespace paddle