tensor_util.h 18.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/eigen.h"
S
Steffy-zxf 已提交
26
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/tensor.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
36

37
#include "paddle/phi/core/dense_tensor.h"
38

D
dzhwinter 已提交
39 40 41
namespace paddle {
namespace framework {

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

S
Steffy-zxf 已提交
62 63 64 65 66 67 68 69
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);

C
chengduo 已提交
70 71 72 73 74 75
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
Y
Yi Wang 已提交
76
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
77
                const platform::DeviceContext& ctx, Tensor* dst);
C
chengduo 已提交
78 79 80 81 82 83 84 85

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
Y
Yi Wang 已提交
86 87
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst);
C
chengduo 已提交
88

F
fengjiayi 已提交
89 90
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst);
D
dzhwinter 已提交
91

Y
Yi Wang 已提交
92 93 94 95 96
template <typename T>
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst);
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
97

Y
Yi Wang 已提交
98 99 100 101 102
template <typename T>
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
103

104
// copy the result bool to cpu
Y
Yi Wang 已提交
105 106
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
107 108 109 110 111 112
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
113

Y
Yi Wang 已提交
114 115 116 117
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx);
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx);
T
tangwei12 已提交
118 119 120
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape);
D
dzhwinter 已提交
121

J
Jack Zhou 已提交
122 123 124 125 126 127 128
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
129 130 131
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
132 133 134
//
// The implementation of template functions.
//
D
dzhwinter 已提交
135

136 137 138 139 140 141 142 143 144 145 146
template <typename T>
void TensorFromArray(const T* src, const size_t& array_size,
                     const platform::DeviceContext& ctx, Tensor* dst) {
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
147
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
148
  }
149
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
150 151
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
152
        dst_place, dst_ptr, src_place, src_ptr, size,
153 154 155
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
156 157 158 159 160 161 162
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
163
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
164 165 166 167
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
168
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
169 170 171 172 173 174 175 176
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
177
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
178 179 180 181 182
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
183 184 185 186 187
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
188 189 190 191 192 193 194 195 196 197 198
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromArray on %s is not supported.", dst_place));
  }
199
}
200

D
dzhwinter 已提交
201
template <typename T>
Y
Yi Wang 已提交
202 203
void TensorFromVector(const std::vector<T>& src,
                      const platform::DeviceContext& ctx, Tensor* dst) {
D
dzhwinter 已提交
204 205 206 207 208 209 210 211
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
212
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
D
dzhwinter 已提交
213
  }
214
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
215 216
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
217
        dst_place, dst_ptr, src_place, src_ptr, size,
D
dzhwinter 已提交
218 219 220
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
221
#ifdef PADDLE_WITH_ASCEND_CL
222 223 224 225 226 227
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
228
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
229
    //  1. vector -> npu pinned tensor
230
    Tensor npu_pinned_tensor(dst->dtype());
231 232 233 234 235 236 237
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
238
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
239 240 241 242 243 244 245 246
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
247
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
248 249 250
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
251 252
  }
#endif
F
fwenguang 已提交
253
#ifdef PADDLE_WITH_MLU
F
fwenguang 已提交
254
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
255
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
F
fwenguang 已提交
256 257
  }
#endif
258 259 260 261 262 263 264 265 266 267 268
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
D
dzhwinter 已提交
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
                             const platform::DeviceContext& ctx, Tensor* dst) {
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
292
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
293 294 295 296
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
    memory::Copy(
297
        dst_place, dst_ptr, src_place, src_ptr, size,
298 299 300 301 302
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
303 304 305 306 307
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
308
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
309 310 311 312
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
313
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
314 315 316 317 318 319 320 321
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
322
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
323 324 325
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
326 327
  }
#endif
328 329 330 331 332 333 334 335 336 337 338
#ifdef PADDLE_WITH_CUSTOM_DEICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
339 340 341
  delete[] array;
}

D
dzhwinter 已提交
342
template <typename T>
Y
Yi Wang 已提交
343
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
344 345 346 347 348 349 350 351 352 353
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
371
template <typename T>
Y
Yi Wang 已提交
372 373
void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
                    std::vector<T>* dst) {
D
dzhwinter 已提交
374 375 376 377 378 379 380 381
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
382
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
383
  }
384
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
385 386
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
387
        dst_place, dst_ptr, src.place(), src_ptr, size,
D
dzhwinter 已提交
388 389 390
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
391 392
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
393
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
394 395
  }
#endif
396 397
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
398
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
399 400
  }
#endif
F
fwenguang 已提交
401 402 403
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
404
        dst_place, dst_ptr, src.place(), src_ptr, size,
F
fwenguang 已提交
405 406 407
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
408 409 410 411 412 413 414 415 416
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorToVector on %s is not supported.", src.place()));
  }
D
dzhwinter 已提交
417 418
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
433
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
434
  }
435
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
436 437
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
    memory::Copy(
438
        dst_place, dst_ptr, src.place(), src_ptr, size,
439 440 441
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
  }
#endif
442 443
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
444
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
445 446
  }
#endif
447 448
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
449
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
450
  }
F
fwenguang 已提交
451 452 453
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
454
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
F
fwenguang 已提交
455
  }
456 457 458 459 460
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
461 462 463 464 465 466 467
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
468
template <typename T>
Y
Yi Wang 已提交
469
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
470 471 472 473 474 475 476
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

477 478 479 480 481
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
482

483
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
484
}
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(src.place()), true,
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

503
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
504 505 506 507 508 509 510

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

511 512
std::ostream& operator<<(std::ostream& os, const LoD& lod);

D
dzhwinter 已提交
513 514
}  // namespace framework
}  // namespace paddle
515

516
namespace phi {
517 518
std::ostream& operator<<(std::ostream& os, const DenseTensor& t);
}