tensor_util.h 20.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15

#pragma once
S
Steffy-zxf 已提交
16 17 18 19 20
#include <algorithm>
#include <codecvt>
#include <locale>
#include <string>
#include <unordered_map>
21
#include <vector>
W
wanghuancoder 已提交
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_type.h"
6
633WHU 已提交
24
#include "paddle/fluid/framework/dlpack_tensor.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/eigen.h"
S
Steffy-zxf 已提交
26
#include "paddle/fluid/framework/string_array.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/tensor.h"
28 29 30 31
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/device_context.h"
F
fwenguang 已提交
33 34 35
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#endif
D
dzhwinter 已提交
36

L
Leo Chen 已提交
37
#include "paddle/fluid/memory/memory.h"
38
#include "paddle/phi/core/dense_tensor.h"
39

D
dzhwinter 已提交
40 41 42
namespace paddle {
namespace framework {

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class PrintOptions {
 public:
  static PrintOptions& Instance() {
    static PrintOptions instance;
    return instance;
  }
  ~PrintOptions() {}
  PrintOptions(const PrintOptions& o) = delete;
  const PrintOptions& operator=(const PrintOptions& o) = delete;

  int precision = 8;
  int threshold = 1000;
  int edgeitems = 3;
  int linewidth = 75;
  bool sci_mode = false;

 private:
  PrintOptions() {}
};

63 64
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
S
Steffy-zxf 已提交
65
                    const platform::DeviceContext& dev_ctx);
66 67
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
S
Steffy-zxf 已提交
68
                      const platform::DeviceContext& dev_ctx);
69 70
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
S
Steffy-zxf 已提交
71
                      const platform::DeviceContext& dev_ctx,
72 73
                      const size_t& seek,
                      const std::vector<int64_t>& shape);
S
Steffy-zxf 已提交
74

C
chengduo 已提交
75 76 77 78 79 80
// NOTE(zcd): Because TensorCopy is an async operation, when the src_place
// and dst_place are two different GPU, to ensure that the operation can
// be carried out correctly, there is a src_ctx wait operation in TensorCopy.
// If ctx_place and src_place are the same, src_ctx.Wait() is added
// after memory::Copy; if ctx_place and dst_place are the same,
// src_ctx.Wait() is added before memory::Copy.
81 82 83 84
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
                const platform::DeviceContext& ctx,
                Tensor* dst);
C
chengduo 已提交
85 86 87 88 89 90 91 92

// NOTE(zcd): If the src.place() and dst_place are two different GPU,
// the copy operation is carried out on the dst_place's stream. This is
// very important, because TensorCopy is an async operator, and in most
// case, once this copy operator returns, dst is to be used in dst_place's
// stream, if this copy operation is carried out on the src_place's stream,
// when dst is used in dst_place's stream the copy operation may be
// not completed.
93 94
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
Y
Yi Wang 已提交
95
                Tensor* dst);
C
chengduo 已提交
96

97 98
void TensorCopySync(const Tensor& src,
                    const platform::Place& dst_place,
F
fengjiayi 已提交
99
                    Tensor* dst);
D
dzhwinter 已提交
100

Y
Yi Wang 已提交
101 102
template <typename T>
void TensorFromVector(const std::vector<T>& src,
103 104
                      const platform::DeviceContext& ctx,
                      Tensor* dst);
Y
Yi Wang 已提交
105 106
template <typename T>
void TensorFromVector(const std::vector<T>& src, Tensor* dst);
D
dzhwinter 已提交
107

Y
Yi Wang 已提交
108
template <typename T>
109 110
void TensorToVector(const Tensor& src,
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
111 112 113
                    std::vector<T>* dst);
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
D
dzhwinter 已提交
114

115
// copy the result bool to cpu
Y
Yi Wang 已提交
116 117
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
118 119 120 121 122 123
bool TensorIsfinite(const framework::Tensor& tensor);

// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
D
dzhwinter 已提交
124

125 126
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
Y
Yi Wang 已提交
127
                    const platform::DeviceContext& dev_ctx);
128 129
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
Y
Yi Wang 已提交
130
                      const platform::DeviceContext& dev_ctx);
131 132
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
T
tangwei12 已提交
133
                      const platform::DeviceContext& dev_ctx,
134 135
                      const size_t& seek,
                      const std::vector<int64_t>& shape);
D
dzhwinter 已提交
136

J
Jack Zhou 已提交
137 138 139 140 141 142 143
// store the bool result tensor in out tensor
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out);
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out);

6
633WHU 已提交
144 145 146
// convert dlpack's DLTensor to tensor
void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst);

Y
Yi Wang 已提交
147 148 149
//
// The implementation of template functions.
//
D
dzhwinter 已提交
150

151
template <typename T>
152 153 154 155
void TensorFromArray(const T* src,
                     const size_t& array_size,
                     const platform::DeviceContext& ctx,
                     Tensor* dst) {
156 157 158 159 160 161 162 163
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(array_size)});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = array_size * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
164
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
165
  }
166
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
167
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
168 169 170 171 172 173
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
174 175
  }
#endif
176 177 178 179 180 181 182
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
183
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
184 185 186 187
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
188 189 190 191 192
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
193 194 195 196 197 198 199 200
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
201
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
202 203 204 205 206
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
  }
#endif
207 208 209 210 211
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
212 213 214
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
215 216 217 218 219
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
220 221 222 223 224 225 226
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromArray on %s is not supported.", dst_place));
  }
227
}
228

D
dzhwinter 已提交
229
template <typename T>
Y
Yi Wang 已提交
230
void TensorFromVector(const std::vector<T>& src,
231 232
                      const platform::DeviceContext& ctx,
                      Tensor* dst) {
D
dzhwinter 已提交
233 234 235 236 237 238 239 240
  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  if (platform::is_cpu_place(dst_place)) {
241
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
D
dzhwinter 已提交
242
  }
243
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
244
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
245 246 247 248 249 250
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
D
dzhwinter 已提交
251 252
  }
#endif
253
#ifdef PADDLE_WITH_ASCEND_CL
254 255 256 257 258 259
  // NOTE(zhiqiu): Becareful that aclrtMemcpyAsync is different from
  // cudaMemcpyAsync.
  // cudaMemcpyAsync is actually "sync" between cpu <-> gpu.
  // aclrtMemcpyAsync is really "async" between cpu <-> npu.
  // Since vector is on cpu, I think this function should be a "sync" operation,
  // so pass nullptr as stream to  memory::Copy().
260
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
261
    //  1. vector -> npu pinned tensor
262
    Tensor npu_pinned_tensor(dst->dtype());
263 264 265 266 267 268 269
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>(dst->dims(), npu_pinned_place);
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
270 271 272 273 274
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
275 276 277 278 279 280 281 282
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
283
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
284 285 286
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
287 288
  }
#endif
F
fwenguang 已提交
289
#ifdef PADDLE_WITH_MLU
F
fwenguang 已提交
290
  else if (platform::is_mlu_place(dst_place)) {  // NOLINT
291
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
F
fwenguang 已提交
292 293
  }
#endif
294 295 296
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    memory::Copy(
297 298 299 300 301
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
302 303
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream());
  }
304 305 306 307 308
#endif
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
309 310 311 312 313
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
D
dzhwinter 已提交
314 315
}

316 317 318 319
// The fully specialized function should be inline to avoid
// multi-definition.
template <>
inline void TensorFromVector(const std::vector<bool>& src,
320 321
                             const platform::DeviceContext& ctx,
                             Tensor* dst) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  // vector<bool> has no data() member, use array instead.
  // See details:
  // https://stackoverflow.com/questions/46115669/why-does-stdvectorbool-have-no-data/46115714
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }

  auto dst_place = ctx.GetPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  if (platform::is_cpu_place(dst_place)) {
338
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
339 340 341
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(dst_place)) {  // NOLINT
L
Leo Chen 已提交
342 343 344 345 346 347
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
348 349 350 351
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(dst_place)) {  // NOLINT
352 353 354 355 356
    //  1. vector -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(dst->dims());
    auto npu_pinned_ptr =
357
        npu_pinned_tensor.mutable_data(npu_pinned_place, dst->dtype());
358 359 360 361
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
362 363 364 365 366
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
367 368 369 370 371 372 373 374
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
375
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
376 377 378
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
379 380
  }
#endif
381 382 383 384 385 386
#ifdef PADDLE_WITH_CUSTOM_DEICE
  else if (platform::is_custom_place(dst_place)) {  // NOLINT
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
387 388 389 390 391
#endif
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(dst_place)) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
392 393 394 395 396
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorFromVector on %s is not supported.", dst_place));
  }
397 398 399
  delete[] array;
}

D
dzhwinter 已提交
400
template <typename T>
Y
Yi Wang 已提交
401
void TensorFromVector(const std::vector<T>& src, Tensor* dst) {
D
dzhwinter 已提交
402 403 404 405 406 407 408 409 410 411
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(src.data());
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<T>(dst_place));
  auto size = src.size() * sizeof(T);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
template <>
inline void TensorFromVector(const std::vector<bool>& src, Tensor* dst) {
  bool* array = new bool[src.size()];
  for (unsigned int i = 0; i < src.size(); i++) {
    array[i] = static_cast<bool>(src[i]);
  }
  platform::CPUPlace dst_place = platform::CPUPlace();
  auto src_ptr = static_cast<const void*>(array);
  platform::CPUPlace src_place;
  dst->Resize({static_cast<int64_t>(src.size())});
  auto dst_ptr = static_cast<void*>(dst->mutable_data<bool>(dst_place));
  auto size = src.size() * sizeof(bool);

  memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  delete[] array;
}

D
dzhwinter 已提交
429
template <typename T>
430 431
void TensorToVector(const Tensor& src,
                    const platform::DeviceContext& ctx,
Y
Yi Wang 已提交
432
                    std::vector<T>* dst) {
D
dzhwinter 已提交
433 434 435 436 437 438 439 440
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

  if (platform::is_cpu_place(src.place())) {
441
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
442
  }
443
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
dzhwinter 已提交
444
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
L
Leo Chen 已提交
445 446 447 448 449 450
    memory::Copy(dst_place,
                 dst_ptr,
                 src.place(),
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
D
dzhwinter 已提交
451 452
  }
#endif
453 454
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
455
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
456 457
  }
#endif
458 459
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
460
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
461 462
  }
#endif
F
fwenguang 已提交
463 464 465
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
    memory::Copy(
466 467 468 469 470
        dst_place,
        dst_ptr,
        src.place(),
        src_ptr,
        size,
F
fwenguang 已提交
471 472 473
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream());
  }
#endif
474 475 476 477 478 479 480 481 482
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
#endif
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "TensorToVector on %s is not supported.", src.place()));
  }
D
dzhwinter 已提交
483 484
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498
template <>
inline void TensorToVector(const Tensor& src,
                           const platform::DeviceContext& ctx,
                           std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  if (platform::is_cpu_place(src.place())) {
499
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
500
  }
501
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
502
  else if (platform::is_gpu_place(src.place())) {  // NOLINT
L
Leo Chen 已提交
503 504 505 506 507 508
    memory::Copy(dst_place,
                 dst_ptr,
                 src.place(),
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(ctx).stream());
509 510
  }
#endif
511 512
#if defined(PADDLE_WITH_XPU)
  else if (platform::is_xpu_place(src.place())) {  // NOLINT
513
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
514 515
  }
#endif
516 517
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src.place())) {  // NOLINT
518
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
519
  }
F
fwenguang 已提交
520 521 522
#endif
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src.place())) {  // NOLINT
523
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
F
fwenguang 已提交
524
  }
525 526 527 528 529
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src.place())) {  // NOLINT
    memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size, nullptr);
  }
530 531 532 533 534 535 536
#endif
  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

D
dzhwinter 已提交
537
template <typename T>
Y
Yi Wang 已提交
538
void TensorToVector(const Tensor& src, std::vector<T>* dst) {
D
dzhwinter 已提交
539 540 541 542 543 544 545
  auto src_ptr = static_cast<const void*>(src.data<T>());
  auto size = src.numel() * sizeof(T);

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(dst->data());

546
  PADDLE_ENFORCE_EQ(
547 548
      platform::is_cpu_place(src.place()),
      true,
549 550 551
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));
D
dzhwinter 已提交
552

553
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
D
dzhwinter 已提交
554
}
555

556 557 558 559 560 561 562 563 564 565 566 567
template <>
inline void TensorToVector(const Tensor& src, std::vector<bool>* dst) {
  auto src_ptr = static_cast<const void*>(src.data<bool>());
  auto size = src.numel() * sizeof(bool);

  bool* array = new bool[src.numel()];

  platform::CPUPlace dst_place;
  dst->resize(src.numel());
  auto dst_ptr = static_cast<void*>(array);

  PADDLE_ENFORCE_EQ(
568 569
      platform::is_cpu_place(src.place()),
      true,
570 571 572 573
      platform::errors::InvalidArgument(
          "The input tensor should be CPU device, but actually it is in %s.",
          src.place()));

574
  memory::Copy(dst_place, dst_ptr, src.place(), src_ptr, size);
575 576 577 578 579 580 581

  for (unsigned int i = 0; i < src.numel(); i++) {
    (*dst)[i] = static_cast<bool>(array[i]);
  }
  delete[] array;
}

582 583
std::ostream& operator<<(std::ostream& os, const LoD& lod);

L
Leo Chen 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
  int rank = src.dims().size();
  PADDLE_ENFORCE_GE(
      rank,
      2,
      platform::errors::InvalidArgument(
          "'ReshapeToMatrix()' is only used for flatten high rank "
          "tensors to matrixs. The dimensions of Tensor must be "
          "greater or equal than 2. "
          "But received dimensions of Tensor is %d",
          rank));
  if (rank == 2) {
    return src;
  }
  Tensor res;
  res.ShareDataWith(src);
  res.Resize(phi::flatten_to_2d(src.dims(), num_col_dims));
  return res;
}

D
dzhwinter 已提交
604 605
}  // namespace framework
}  // namespace paddle
606

607
namespace phi {
608 609
std::ostream& operator<<(std::ostream& os, const DenseTensor& t);
}