# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function __all__ = [ 'TracedLayer', 'dygraph_to_static_code', 'dygraph_to_static_func', 'dygraph_to_static_output', 'dygraph_to_static_program' ] import warnings from ..wrapped_decorator import wrap_decorator from .base import program_desc_tracing_guard, switch_to_static_graph from .layers import Layer from paddle.fluid import core from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode from paddle.fluid.executor import Executor, scope_guard from paddle.fluid.compiler import CompiledProgram from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator def create_program_from_desc(program_desc): program = Program() program.desc = program_desc program.blocks = [Block(program, 0)] program._sync_with_cpp() return program def _extract_vars(inputs, result_list): if isinstance(inputs, Variable): result_list.append(inputs) if isinstance(inputs, (list, tuple)): for var in inputs: _extract_vars(var, result_list) def extract_vars(inputs): result_list = [] _extract_vars(inputs, result_list) return result_list def _dygraph_to_static_code_(dygraph_func): def __impl__(*args, **kwargs): program_translator = ProgramTranslator() return program_translator.get_code(dygraph_func) return __impl__ dygraph_to_static_code = wrap_decorator(_dygraph_to_static_code_) def _dygraph_to_static_program_(dygraph_func): def __impl__(*args, **kwargs): if in_dygraph_mode(): warnings.warn( "The decorator 'dygraph_to_static_program' doesn't work in " "dygraph mode. We will just return dygraph output. Use the " "decorator in static mode if you would like to translate to " "static graph.") return dygraph_func(*args, **kwargs) program_translator = ProgramTranslator() return program_translator.get_program(dygraph_func, *args, **kwargs) return __impl__ dygraph_to_static_program = wrap_decorator(_dygraph_to_static_program_) def _dygraph_to_static_func_(dygraph_func): def __impl__(*args, **kwargs): if in_dygraph_mode(): warnings.warn( "The decorator 'dygraph_to_static_func' doesn't work in " "dygraph mode. We will just return dygraph output. Use the " "decorator in static mode if you would like to translate to " "static graph.") return dygraph_func(*args, **kwargs) program_translator = ProgramTranslator() static_func = program_translator.get_func(dygraph_func) return static_func(*args, **kwargs) return __impl__ dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_) def _dygraph_to_static_output_(dygraph_func): def __impl__(*args, **kwargs): if in_dygraph_mode(): warnings.warn( "The decorator 'dygraph_to_static_output' doesn't work in " "dygraph mode. We will just return dygraph output. Use the " "decorator in static mode if you would like to translate to " "static graph.") return dygraph_func(*args, **kwargs) program_translator = ProgramTranslator() return program_translator.get_output(dygraph_func, *args, **kwargs) return __impl__ dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_) @dygraph_only def _trace(layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'): assert isinstance(layer, Layer) if not isinstance(inputs, (list, tuple)): inputs = [inputs] tracer = _dygraph_tracer()._get_program_desc_tracer() var_list = extract_vars(inputs) with program_desc_tracing_guard(True): original_outputs = layer(*inputs) if not isinstance(original_outputs, (list, tuple)): outputs = [original_outputs] else: outputs = original_outputs out_vars = [var for var in outputs] program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc( var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix) tracer.reset() with _dygraph_guard(None): program = create_program_from_desc(program_desc) return original_outputs, program, feed_names, fetch_names, parameters class TracedLayer(object): """ TracedLayer is used to convert a forward dygraph model to a static graph model. This is mainly used to save the dygraph model for online inference using C++. Besides, users can also do inference in Python using the converted static graph model, which usually has better performance than the original dygraph model. TracedLayer would run the static graph model using :code:`Executor` and :code:`CompiledProgram` . The static graph model would share parameters with the dygraph model. All TracedLayer objects should not be created by constructor and should be created by static method :code:`TracedLayer.trace(layer, inputs)` . The TracedLayer can only be used to convert the data-independent dygraph model into the static graph model, which means the dygraph model should be independent with the tensor data and shape. """ def __init__(self, program, parameters, feed_names, fetch_names): self._program = program self._feed_names = feed_names self._fetch_names = fetch_names self._place = _current_expected_place() self._scope = core.Scope() for p in parameters: src_tensor = p.value().get_tensor() dst_tensor = self._scope.var(p.name).get_tensor() dst_tensor._share_data_with(src_tensor) self._exe = Executor(self._place) self._compiled_program = None self._build_strategy = None self._exec_strategy = None @property def program(self): return self._program def _switch(self, is_test=True): for block_id in range(self._program.num_blocks): block = self._program.block(block_id) for op in block.ops: if op.has_attr("is_test"): op._set_attr("is_test", is_test) @staticmethod @dygraph_only def trace(layer, inputs): """ This method is the only allowed method to create TracedLayer object. It would call the :code:`layer(*inputs)` method to run the dygraph model and convert it into a static graph model. Args: layer (dygraph.Layer): the layer object to be traced. inputs (list(Variable)): the input variables of the layer object. Returns: tuple: A tuple of 2 items, whose the first item is the output of :code:`layer(*inputs)` , and the second item is the created TracedLayer object. Examples: .. code-block:: python: import paddle.fluid as fluid from paddle.fluid.dygraph import Linear, to_variable, TracedLayer import numpy as np class ExampleLayer(fluid.dygraph.Layer): def __init__(self): super(ExampleLayer, self).__init__() self._fc = Linear(3, 10) def forward(self, input): return self._fc(input) with fluid.dygraph.guard(): layer = ExampleLayer() in_np = np.random.random([2, 3]).astype('float32') in_var = to_variable(in_np) out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var]) # run the static graph model using Executor inside out_static_graph = static_layer([in_var]) print(len(out_static_graph)) # 1 print(out_static_graph[0].shape) # (2, 10) # save the static graph model for inference static_layer.save_inference_model(dirname='./saved_infer_model') """ outs, prog, feed, fetch, parameters = _trace(layer, inputs) traced = TracedLayer(prog, parameters, feed, fetch) return outs, traced def set_strategy(self, build_strategy=None, exec_strategy=None): """ Set the strategies when running static graph model. Args: build_strategy (BuildStrategy, optional): build strategy of :code:`CompiledProgram` inside TracedLayer. Default None. exec_strategy (ExecutionStrategy, optional): execution strategy of :code:`CompiledProgram` inside TracedLayer. Default None. Returns: None Examples: .. code-block:: python: import paddle.fluid as fluid from paddle.fluid.dygraph import Linear, to_variable, TracedLayer import numpy as np class ExampleLayer(fluid.dygraph.Layer): def __init__(self): super(ExampleLayer, self).__init__() self._fc = Linear(3, 10) def forward(self, input): return self._fc(input) with fluid.dygraph.guard(): layer = ExampleLayer() in_np = np.random.random([2, 3]).astype('float32') in_var = to_variable(in_np) out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var]) build_strategy = fluid.BuildStrategy() build_strategy.enable_inplace = True exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 2 static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy) out_static_graph = static_layer([in_var]) """ assert self._compiled_program is None, "Cannot set strategy after run" self._build_strategy = build_strategy self._exec_strategy = exec_strategy @switch_to_static_graph def _compile(self): self._compiled_program = CompiledProgram( self._program).with_data_parallel( build_strategy=self._build_strategy, exec_strategy=self._exec_strategy, places=self._place) def _build_feed(self, inputs): assert isinstance(inputs, (list, tuple)), \ "Inputs should be a list or tuple of variables" assert len(inputs) == len(self._feed_names) feed_dict = {} if in_dygraph_mode(): for x, name in zip(inputs, self._feed_names): feed_dict[name] = x.value().get_tensor() else: for x, name in zip(inputs, self._feed_names): feed_dict[name] = x return feed_dict @switch_to_static_graph def _run(self, feed): return self._exe.run(self._compiled_program, feed=feed, fetch_list=self._fetch_names) def __call__(self, inputs): with scope_guard(self._scope): if self._compiled_program is None: self._compile() return self._run(self._build_feed(inputs)) @switch_to_static_graph def save_inference_model(self, dirname, feed=None, fetch=None): """ Save the TracedLayer to a model for inference. The saved inference model can be loaded by C++ inference APIs. Args: dirname (str): the directory to save the inference model. feed (list[int], optional): the input variable indices of the saved inference model. If None, all input variables of the TracedLayer object would be the inputs of the saved inference model. Default None. fetch (list[int], optional): the output variable indices of the saved inference model. If None, all output variables of the TracedLayer object would be the outputs of the saved inference model. Default None. Returns: None Examples: .. code-block:: python: import paddle.fluid as fluid from paddle.fluid.dygraph import Linear, to_variable, TracedLayer import numpy as np class ExampleLayer(fluid.dygraph.Layer): def __init__(self): super(ExampleLayer, self).__init__() self._fc = Linear(3, 10) def forward(self, input): return self._fc(input) save_dirname = './saved_infer_model' in_np = np.random.random([2, 3]).astype('float32') with fluid.dygraph.guard(): layer = ExampleLayer() in_var = to_variable(in_np) out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var]) static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0]) place = fluid.CPUPlace() exe = fluid.Executor(place) program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname, exe) fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars) print(fetch.shape) # (2, 10) """ from paddle.fluid.io import save_inference_model def get_feed_fetch(all_vars, partial_vars): if partial_vars is None: return all_vars return [all_vars[idx] for idx in partial_vars] with scope_guard(self._scope): feeded_var_names = get_feed_fetch(self._feed_names, feed) target_var_names = get_feed_fetch(self._fetch_names, fetch) target_vars = [] for name in target_var_names: target_var = self._program.global_block().vars.get(name, None) assert target_var is not None, "{} cannot be found".format(name) target_vars.append(target_var) save_inference_model( dirname=dirname, feeded_var_names=feeded_var_names, target_vars=target_vars, executor=self._exe, main_program=self._program.clone())