framework.py 94.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78
_imperative_tracer_ = None
M
minqiyang 已提交
79
_imperative_current_expected_place_ = None
80 81 82 83 84 85 86 87 88


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
89

M
minqiyang 已提交
90
def _current_expected_place():
M
minqiyang 已提交
91
    return _imperative_current_expected_place_
M
minqiyang 已提交
92 93


S
sneaxiy 已提交
94 95 96 97 98
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
S
add doc  
sneaxiy 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    '''
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
    '''
S
sneaxiy 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
S
add doc  
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
    '''
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
    '''
S
sneaxiy 已提交
148 149 150 151 152 153
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
S
add doc  
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
    '''
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
    '''
S
sneaxiy 已提交
168 169 170 171 172 173 174
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


Q
Qiao Longfei 已提交
175 176 177 178 179 180 181 182 183
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
210
@signature_safe_contextmanager
211 212 213 214 215 216 217 218 219 220 221 222
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
223

224 225 226 227
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
228 229
          with name_scope("attention"):
             ...
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
249 250 251
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
252 253 254 255


def grad_var_name(var_name):
    """
256 257
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
258 259 260
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
261

262
def convert_np_dtype_to_dtype_(np_dtype):
263 264
    """
    Convert the data type in numpy to the data type in Paddle
265

266
    Args:
267
        np_dtype(np.dtype): the data type in numpy.
268

269 270
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
271 272

    """
273 274
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
275
        return core.VarDesc.VarType.FP32
276
    elif dtype == np.float64:
277
        return core.VarDesc.VarType.FP64
278
    elif dtype == np.float16:
279
        return core.VarDesc.VarType.FP16
280
    elif dtype == np.int32:
281
        return core.VarDesc.VarType.INT32
282
    elif dtype == np.int16:
283
        return core.VarDesc.VarType.INT16
284
    elif dtype == np.int64:
285
        return core.VarDesc.VarType.INT64
286
    elif dtype == np.bool:
287
        return core.VarDesc.VarType.BOOL
288 289
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
290 291
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
292 293
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
294
    else:
M
minqiyang 已提交
295
        raise ValueError("Not supported numpy dtype %s" % dtype)
296 297 298


def dtype_is_floating(dtype):
299 300 301
    """
    Check the data type is floating or not.
    Args:
302
        dtype(np.dtype|core.VarDesc.VarType): data type.
303 304 305 306 307
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
308
    if not isinstance(dtype, core.VarDesc.VarType):
309 310
        dtype = convert_np_dtype_to_dtype_(dtype)

311 312 313 314
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
315 316


Y
Yang Yang(Tony) 已提交
317
def _debug_string_(proto, throw_on_error=True):
318 319 320 321 322 323 324 325 326 327 328
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
329
    error_fields = list()
Y
Yang Yang(Tony) 已提交
330
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
331 332
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
333 334 335
    return proto.__str__()


X
Xin Pan 已提交
336
class Variable(object):
337
    """
338 339 340
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
341
    two variables in different blocks could have the same name.
342

343 344
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
345

346
    Most of a Variable's member variables can be setted to be None. It mean
347
    it is not available or will be specified later.
348 349

    Args:
350
        block(Block): The block that the variable belongs to.
351 352
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
353 354
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
355
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
356
            Some kinds of variable do not contain shape, just set it to None.
357 358 359
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
360
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
361
            series data.
362
            Default: None
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
385 386
    """

Y
Yu Yang 已提交
387 388
    def __init__(self,
                 block,
Y
Yu Yang 已提交
389
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
390 391 392 393
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
394
                 capacity=None,
Q
QI JUN 已提交
395
                 persistable=None,
F
fengjiayi 已提交
396
                 error_clip=None,
Y
Yu Yang 已提交
397
                 stop_gradient=False,
F
fengjiayi 已提交
398
                 is_data=False,
Y
Yu Yang 已提交
399
                 **kwargs):
Y
Yu Yang 已提交
400
        self.block = block
F
fengjiayi 已提交
401
        self.error_clip = error_clip
Y
Yu Yang 已提交
402 403

        if name is None:
Y
Yu Yang 已提交
404
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
405
        is_new_var = False
M
minqiyang 已提交
406
        name = cpt.to_text(name)
M
minqiyang 已提交
407
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
408 409

        if self.desc is None:
M
minqiyang 已提交
410
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
411
            is_new_var = True
Y
Yu Yang 已提交
412

Y
Yu Yang 已提交
413 414 415 416 417 418 419 420
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
421
        if shape is not None:
Y
Yu Yang 已提交
422
            if is_new_var:
423
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
424 425 426 427 428 429 430 431
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
432
        if dtype is not None:
433
            if not isinstance(dtype, core.VarDesc.VarType):
434
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
435
            if is_new_var:
F
fengjiayi 已提交
436
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
437
            else:
F
fengjiayi 已提交
438
                old_dtype = self.dtype
Q
QI JUN 已提交
439
                if dtype != old_dtype:
Y
Yu Yang 已提交
440 441 442 443 444
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
445 446

        if lod_level is not None:
Y
Yu Yang 已提交
447
            if is_new_var:
448
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
449 450 451 452 453 454 455
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
456 457 458 459 460 461 462 463 464 465 466
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

467 468 469 470 471 472 473 474
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
475
        if _in_imperative_mode():
M
minqiyang 已提交
476
            # record vars in tracer rather than blocks
M
minqiyang 已提交
477 478
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
479
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
480
            self._ivar.desc = self.desc
M
minqiyang 已提交
481 482
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
483 484 485 486 487
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
488

489
    def _numpy(self):
M
minqiyang 已提交
490
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
491
        return np.array(new_ivar.value().get_tensor())
492 493

    def _backward(self):
X
Xin Pan 已提交
494
        self._ivar._run_backward()
495 496

    def _gradient(self):
M
minqiyang 已提交
497
        return np.array(self._ivar._grad_value())
498

X
Xin Pan 已提交
499 500
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
501

502
    def __str__(self):
Y
Yang Yang(Tony) 已提交
503 504
        return self.to_string(True)

F
update  
fengjiayi 已提交
505
    def to_string(self, throw_on_error, with_details=False):
506 507 508 509
        """
        Get debug string.

        Args:
510 511
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
512
            with_details(bool): more details about variables and parameters
513 514
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
515

516 517
        Returns:
            str: The debug string.
518
        """
F
update  
fengjiayi 已提交
519 520
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
521
        protostr = self.desc.serialize_to_string()
522
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
523 524 525 526
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
527 528
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
529
        return res_str
530 531 532

    __repr__ = __str__

W
Wu Yi 已提交
533
    def _set_desc(self, input):
534 535 536 537 538 539 540 541 542
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
543 544
        self.desc = input

545 546
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
547 548 549 550
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
551 552 553

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
554 555 556
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
557

558 559 560 561
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
562 563 564 565
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
566 567
    @property
    def name(self):
M
minqiyang 已提交
568
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
569

T
typhoonzero 已提交
570 571 572 573
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
574 575 576
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
577
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
578 579

    @property
F
fengjiayi 已提交
580 581
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
582 583 584

    @property
    def lod_level(self):
585
        return self.desc.lod_level()
Y
Yu Yang 已提交
586

Y
Yu Yang 已提交
587 588 589 590
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
591
    def _set_error_clip(self, error_clip):
592 593 594 595 596 597 598 599 600
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
601 602
        self.error_clip = error_clip

Y
Yu Yang 已提交
603

F
fengjiayi 已提交
604 605 606
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
607

608 609
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
610 611 612 613
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
614
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
615 616 617 618 619
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
620 621 622 623
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
624 625 626 627 628 629 630 631 632
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
633
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
634 635 636 637 638 639
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
640 641 642 643 644 645 646 647
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
648 649
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
650 651
        return self.op_proto_map[type]

652 653 654 655
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
656
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
657 658
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
659 660
        }

F
fengjiayi 已提交
661

X
Xin Pan 已提交
662
class Operator(object):
663
    """
664 665 666 667 668 669 670
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
671
        type(str): The type of operator. Default None.
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
692
        Block.append_op or Block._prepend_op instead.
693 694 695 696 697 698 699 700 701 702

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
703
    """
704 705 706
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
707 708
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
709
    }
710

Y
Yu Yang 已提交
711 712
    def __init__(self,
                 block,
Y
Yu Yang 已提交
713
                 desc,
Y
Yu Yang 已提交
714 715 716
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
717
                 attrs=None):
Y
Yu Yang 已提交
718
        self.block = block
Y
Yu Yang 已提交
719
        self.desc = desc
G
gongweibao 已提交
720 721 722 723 724
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
725 726 727 728
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
729 730
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
731 732 733

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
734 735
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
736

G
gongweibao 已提交
737 738
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
739

F
fengjiayi 已提交
740 741 742 743 744
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
745 746 747 748 749
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
750
        self.desc.set_type(type)
F
fengjiayi 已提交
751
        proto = OpProtoHolder.instance().get_op_proto(type)
752

753 754 755
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
756 757
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
758
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
759 760
                    return True
            return False
Q
QI JUN 已提交
761

Y
Yang Yang(Tony) 已提交
762 763 764 765 766 767 768
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
769 770 771 772
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
773 774
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
775 776 777
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
778
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
779
                            in_arg_names.append(arg)
780 781
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
782
                        else:
M
minqiyang 已提交
783
                            in_arg_names.append(cpt.to_text(arg.name))
784
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
785 786
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
787

Y
Yu Yang 已提交
788
        if outputs is not None:
789
            for m in proto.outputs:
Q
qingqing01 已提交
790 791 792 793 794 795
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
796
            for out_proto in proto.outputs:
Q
qingqing01 已提交
797 798
                if out_proto.name not in outputs:
                    continue
799 800 801 802
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
803 804
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
805 806 807
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
808
                    out_arg_names.append(cpt.to_text(arg.name))
809 810
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
811

G
gongweibao 已提交
812 813
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
814
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
815
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
816
                attr_name = attr.name
G
gongweibao 已提交
817
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
818
                    continue
G
gongweibao 已提交
819
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
820 821
                self._update_desc_attr(attr_name, attr_val)

822
        self.desc.check_attrs()
W
Wu Yi 已提交
823
        if self._has_kernel(type):
Q
QI JUN 已提交
824
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
825
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
826

X
Xin Pan 已提交
827 828 829
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
830

X
Xin Pan 已提交
831
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
832
            if inputs is not None:
X
Xin Pan 已提交
833 834 835 836 837
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
838

X
Xin Pan 已提交
839
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
840
            if outputs is not None:
X
Xin Pan 已提交
841 842 843 844 845
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
846

W
Wu Yi 已提交
847
    def _has_kernel(self, op_type):
848 849
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
850
    def to_string(self, throw_on_error):
851
        """
852 853
        Get debug string.

854
        Args:
855 856
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
857

858 859
        Returns:
            str: The debug string.
860 861

        """
862
        protostr = self.desc.serialize_to_string()
863
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
864 865 866 867
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
868 869 870

    __repr__ = __str__

F
fengjiayi 已提交
871 872 873 874 875
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
876
        """
877
        Get the input arguments according to the input parameter name.
878

879 880
        Args:
            name(str): The input parameter name.
881

882 883 884
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
885
        """
F
fengjiayi 已提交
886 887
        return self.desc.input(name)

W
Wu Yi 已提交
888
    def _rename_input(self, old_name, new_name):
889 890 891 892 893 894 895 896 897 898
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
899
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
900

W
Wu Yi 已提交
901
    def _rename_output(self, old_name, new_name):
902 903 904 905 906 907 908 909 910 911
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
912
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
913

F
fengjiayi 已提交
914 915 916 917
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
918 919 920 921 922 923 924 925
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
926
    def output(self, name):
927
        """
928
        Get output arguments by the output parameter name.
929

930 931
        Args:
            name(str): The output parameter name.
932

933 934 935
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
936
        """
F
fengjiayi 已提交
937 938 939 940 941 942
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

943 944 945 946 947 948 949 950
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
951
    def has_attr(self, name):
952
        """
953 954
        Whether this Operator has the attribute with name or not.

955
        Args:
956
            name(str): the attribute name.
957

958 959
        Returns:
            bool: True if has this attribute.
960 961

        """
F
fengjiayi 已提交
962 963 964
        return self.desc.has_attr(name)

    def attr_type(self, name):
965
        """
966
        Get the type of attribute by attribute's name.
967

968 969
        Args:
            name(str): the attribute name.
970

971 972
        Returns:
            core.AttrType: the attribute type.
973
        """
F
fengjiayi 已提交
974 975
        return self.desc.attr_type(name)

W
Wu Yi 已提交
976
    def _set_attr(self, name, val):
977 978 979 980 981 982 983 984 985 986
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1000 1001
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1002 1003
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1004
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1005 1006 1007 1008
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1009
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1010

F
fengjiayi 已提交
1011 1012 1013 1014 1015
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1016
        """
1017 1018
        Get the attribute by name.

1019
        Args:
1020
            name(str): the attribute name.
1021

1022 1023
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1024 1025
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1026
        return self.desc.attr(name)
Y
Yu Yang 已提交
1027

W
Wu Yi 已提交
1028
    def _block_attr_id(self, name):
1029
        """
G
gongweibao 已提交
1030
        Get the block attribute's id by name.
1031

1032 1033
        Args:
            name(str): the attribute name.
1034

1035 1036
        Returns:
            int: the block index.
1037
        """
W
Wu Yi 已提交
1038
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1039

W
Wu Yi 已提交
1040
    def _block_attr(self, name):
G
gongweibao 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1051
        id = self._block_attr_id(name)
G
gongweibao 已提交
1052 1053 1054
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1055
    def _blocks_attr(self, name):
G
gongweibao 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1066
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1067 1068 1069 1070 1071
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1072
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1083
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1084

J
JiayiFeng 已提交
1085
    def all_attrs(self):
F
fengjiayi 已提交
1086
        """
1087 1088 1089
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1090
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1091 1092 1093 1094
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1095 1096
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1097
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1098 1099 1100
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1101
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1102 1103 1104 1105
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1106 1107
        return attr_map

Y
Yu Yang 已提交
1108

Y
Yu Yang 已提交
1109
class Block(object):
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1124
        use `Program._create_block()` to create a block.
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1139
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1140
        self.desc = program.desc.block(idx)
1141
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1142
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1143
        self.program = program
1144
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1145

1146
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1147 1148
        return self.to_string(True)

F
fengjiayi 已提交
1149 1150
    def to_string(self, throw_on_error, with_details=False):
        """
1151 1152
        Get debug string.

F
fengjiayi 已提交
1153 1154
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1155
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1156
            with_details(bool): more details about variables and parameters
1157 1158
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1159

1160 1161
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1162 1163 1164 1165
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1166
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1167 1168
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1169
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1170
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1171
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1172
            for op in self.ops:
F
fengjiayi 已提交
1173 1174
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1175 1176 1177
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1178 1179
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1180 1181
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1182 1183 1184

    __repr__ = __str__

Y
Yu Yang 已提交
1185 1186
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1187
        return self.desc.parent
Y
Yu Yang 已提交
1188

Y
Yu Yang 已提交
1189 1190 1191 1192
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1193
    def _set_forward_block_idx(self, idx):
1194 1195 1196 1197 1198 1199 1200 1201 1202
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1203
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1204

Y
Yu Yang 已提交
1205 1206
    @property
    def idx(self):
Y
Yu Yang 已提交
1207
        return self.desc.id
Y
Yu Yang 已提交
1208

Q
Qiao Longfei 已提交
1209
    def var(self, name):
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1223
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1224 1225 1226
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1227 1228
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1229
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1230
        return v
Q
Qiao Longfei 已提交
1231

X
Xin Pan 已提交
1232
    def _find_var_recursive(self, name):
1233 1234 1235 1236 1237 1238 1239
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1240
            Variable: the Variable with the giving name. Or None if not found.
1241
        """
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1266
        return None
Y
Yu Yang 已提交
1267

X
Xin Pan 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1287

M
minqiyang 已提交
1288
    def _clear_block(self):
M
minqiyang 已提交
1289
        # TODO(minqiyang): move this to backward_hooks
M
minqiyang 已提交
1290 1291
        self.desc._clear_block()

M
minqiyang 已提交
1292
        for name in self.vars.keys():
M
minqiyang 已提交
1293
            assert self.vars[name].persistable
M
minqiyang 已提交
1294

M
minqiyang 已提交
1295
        del self.ops[:]
M
minqiyang 已提交
1296

Q
Qiao Longfei 已提交
1297
    def all_parameters(self):
1298
        return list(self.iter_parameters())
1299

1300
    def iter_parameters(self):
M
minqiyang 已提交
1301
        return (item[1] for item in six.iteritems(self.vars)
1302
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1303

Y
Yu Yang 已提交
1304
    def create_var(self, *args, **kwargs):
1305
        var = Variable(block=self, *args, **kwargs)
1306 1307
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1308
        return var
Y
Yu Yang 已提交
1309

Q
Qiao Longfei 已提交
1310 1311 1312
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1313
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1314 1315
        """
        Rename variable in vars and ops' inputs and outputs
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1328
        """
M
minqiyang 已提交
1329 1330
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1331

T
typhoonzero 已提交
1332
        if not self.has_var(name):
1333
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1334 1335
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1336
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1337 1338 1339 1340 1341 1342 1343
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1344
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1345 1346 1347 1348
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1349
        orig_var_type = v.type
M
minqiyang 已提交
1350
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1351
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1352
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1353
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1354 1355 1356 1357
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1358
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1359 1360 1361 1362 1363 1364 1365
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1366
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1367 1368
            var = Variable(
                self,
T
typhoonzero 已提交
1369
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1370 1371 1372 1373
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1374
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1375 1376 1377
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1378
        self._sync_with_cpp()
1379
        return var
T
typhoonzero 已提交
1380

W
Wu Yi 已提交
1381 1382
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1383
        self.desc._remove_var(cpt.to_bytes(name))
1384 1385
        del self.vars[name]

Y
Yu Yang 已提交
1386 1387
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1388
        param = Parameter(global_block, *args, **kwargs)
1389
        if 'initializer' in kwargs:
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1410
        return param
Y
Yu Yang 已提交
1411

Y
Yu Yang 已提交
1412
    def append_op(self, *args, **kwargs):
1413 1414 1415 1416 1417 1418
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1419
        op_desc = self.desc.append_op()
1420 1421 1422 1423 1424 1425 1426
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1427 1428 1429 1430 1431 1432 1433

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
            self._trace_op(op, kwargs.get("stop_gradient", False))
1434
        self.ops.append(op)
M
minqiyang 已提交
1435

1436 1437 1438
        return op

    def _trace_op(self, op, stop_gradient=False):
M
minqiyang 已提交
1439 1440 1441 1442
        backward_refs = _imperative_tracer().trace(
            op.iop, op.inputs, op.outputs, self.desc,
            _imperative_current_expected_place_, stop_gradient)

M
minqiyang 已提交
1443
        # TODO(minqiyang): support backward_hooks to eager remove backward_refs
M
minqiyang 已提交
1444 1445 1446 1447 1448 1449 1450 1451
        op.backward_refs = defaultdict(list)
        for k, v in six.iteritems(op.inputs):
            if k in backward_refs:
                op.backward_refs[k] = op.inputs[k]

        for k, v in six.iteritems(op.outputs):
            if k in backward_refs:
                op.backward_refs[k] = op.outputs[k]
Y
Yu Yang 已提交
1452

W
Wu Yi 已提交
1453
    def _insert_op(self, index, *args, **kwargs):
1454 1455 1456 1457 1458 1459 1460 1461 1462
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1463 1464
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1465 1466 1467 1468
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1469
    def _remove_op(self, index):
1470 1471 1472 1473 1474 1475 1476 1477 1478
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1479 1480
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1481 1482
        del self.ops[index]

W
Wu Yi 已提交
1483
    def _slice_ops(self, start, end):
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1494
        return self.ops[start:end]
Y
Yancey1989 已提交
1495

W
Wu Yi 已提交
1496 1497
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1498 1499 1500 1501 1502 1503 1504
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1505
        self.ops.insert(0, op)
M
minqiyang 已提交
1506 1507
        if _in_imperative_mode():
            self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1508 1509
        return op

W
Wu Yi 已提交
1510
    def _sync_with_cpp(self):
1511
        """
1512 1513
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1514
        """
Q
Qiao Longfei 已提交
1515 1516 1517 1518 1519
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1520
        # sync variables removed from c++ end
1521
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1522
            if not self.desc.find_var(cpt.to_bytes(var)):
1523 1524
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1525
        # sync operators from cpp
1526 1527 1528 1529
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1546 1547 1548 1549 1550

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1551
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1552 1553 1554 1555 1556 1557 1558

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1572 1573 1574 1575
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1576
    def _copy_param_info_from(self, other):
1577
        """
1578 1579
        Copy the information of parameters from the other block.

1580
        Args:
1581 1582 1583 1584 1585
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1586 1587 1588 1589 1590

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1591 1592
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1593
        for p in other.iter_parameters():
1594 1595 1596
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1597
                raise ValueError("_copy_param_info_from should be invoked with "
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1610
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1611
                error_clip=p.error_clip,
1612 1613 1614
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1615
    def _clone_variable(self, var):
1616 1617
        """
        Clone a variable into current block.
1618

1619 1620 1621 1622
        Args:
            var: the variable to be cloned.

        Returns:
1623
            Variable: the new  variable cloned from 'var' in current block.
1624 1625
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1626 1627 1628 1629 1630
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1631 1632
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1633
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1634 1635 1636 1637 1638 1639
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1640 1641
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1642 1643 1644 1645 1646 1647 1648
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1649 1650
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1651
        return ret_var
1652

Y
Yu Yang 已提交
1653

1654 1655
class IrGraph(object):
    """
1656 1657 1658 1659
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1660 1661 1662 1663
    """

    def __init__(self, graph, for_test=False):
        """
1664 1665
        Construct an IrGraph using core.Graph.

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1676 1677 1678
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1679 1680
        return self._for_test

W
WangZhen 已提交
1681
    def all_nodes(self):
1682 1683 1684
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1685
        return {node for node in self.graph.nodes()}
1686 1687

    def all_vars(self):
1688 1689 1690
        """
        Return all variable nodes included in the graph as a set.
        """
1691 1692
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1693
    def all_persistable_vars(self):
1694 1695 1696
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1697 1698 1699 1700 1701 1702 1703
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1704
    def all_ops(self):
1705 1706 1707
        """
        Return all operator nodes included in the graph as a set.
        """
1708 1709
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1710 1711
    def var_node(self, name):
        """
1712 1713
        Get a variable node by name from the graph.

W
WangZhen 已提交
1714 1715
        Args:
            name(str): the name of the variable node.
1716

W
WangZhen 已提交
1717 1718 1719
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1720

W
WangZhen 已提交
1721
        Returns:
1722
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1737
    def create_param_node(self, name, var_type, shape, var_dtype):
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1751 1752 1753 1754 1755 1756 1757 1758
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1773 1774 1775 1776 1777 1778 1779
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1790 1791 1792
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1805 1806
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1807
        for attr, value in six.iteritems(attrs):
1808
            self._update_desc_attr(op_desc, attr, value)
1809
        for input_name, var_nodes in six.iteritems(inputs):
1810 1811 1812 1813
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1814
        for output_name, var_nodes in six.iteritems(outputs):
1815 1816 1817 1818 1819 1820 1821
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1822 1823 1824 1825 1826 1827 1828 1829 1830
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1831 1832 1833
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1834 1835 1836 1837 1838 1839 1840 1841
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1842 1843 1844
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1845 1846 1847 1848 1849 1850 1851
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1852 1853 1854 1855 1856 1857 1858
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1859
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1860
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1861 1862 1863 1864
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1865 1866 1867 1868 1869 1870 1871
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1872
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1873 1874 1875 1876
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1877 1878
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1879
    def has_circle(self):
1880 1881 1882 1883 1884 1885
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1886 1887 1888
        return core.has_circle(self.graph)

    def graph_num(self):
1889 1890 1891 1892 1893 1894
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1895 1896 1897
        return core.graph_num(self.graph)

    def topology_sort(self):
1898 1899 1900 1901 1902 1903 1904 1905
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1906 1907 1908
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1909 1910 1911 1912 1913 1914
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1915 1916
        return core.build_adjacency_list(self.graph)

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1931 1932 1933 1934 1935 1936 1937 1938 1939
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1940 1941 1942 1943 1944 1945
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1946 1947
        ops_num = 0
        for node in self.graph.nodes():
1948
            if node.is_op():
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1975
        convert_pass = core.get_pass('graph_to_program_pass')
1976 1977
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1998
class Program(object):
D
dzhwinter 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2010
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2011 2012

    Returns:
Y
yuyang18 已提交
2013
        A empty program.
D
dzhwinter 已提交
2014 2015

    Examples:
Y
yuyang18 已提交
2016 2017 2018 2019 2020 2021
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2022 2023 2024

    """

2025 2026
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2027 2028
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2029
        self._seed = 0
Y
yuyang18 已提交
2030
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2031
        self._op_role_var = []
T
tangwei12 已提交
2032

2033 2034
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2035
        self._is_distributed = False
2036
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2037
        self._is_chief = False
2038 2039 2040
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2041
        self._endpoints = []
2042 2043 2044
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2045
        self._trainers_endpoints = []
2046
        # the distributed lookup table names
T
tangwei12 已提交
2047
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2048
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2049
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2050
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2051 2052

    @property
D
dzhwinter 已提交
2053
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2054 2055
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2056
        return self.__is_mem_optimized
D
dzhwinter 已提交
2057

D
dzhwinter 已提交
2058 2059 2060
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2061 2062 2063

    @property
    def op_role(self):
Y
yuyang18 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2077 2078 2079
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2080
    def op_role(self, role):
Y
yuyang18 已提交
2081 2082 2083 2084
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2085 2086 2087 2088 2089 2090 2091
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2092 2093 2094 2095
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2096
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2097

S
rename  
sneaxiy 已提交
2098
    @signature_safe_contextmanager
W
Wu Yi 已提交
2099
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2100 2101 2102 2103 2104 2105 2106
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2107
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2108 2109 2110 2111

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2112
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2113 2114
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2115 2116 2117
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2118 2119
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2120 2121 2122 2123
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2124
        yield
X
Xin Pan 已提交
2125 2126
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2127

S
rename  
sneaxiy 已提交
2128
    @signature_safe_contextmanager
X
Xin Pan 已提交
2129
    def _lr_schedule_guard(self, is_with_opt=False):
2130 2131 2132 2133 2134 2135 2136
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2137 2138 2139 2140
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2141 2142 2143 2144 2145 2146 2147

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2148 2149 2150 2151

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2152 2153
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2154 2155
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2156 2157 2158
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2159 2160
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2161

2162
    def __str__(self):
Y
yuyang18 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2172 2173
        return self.to_string(True)

F
fengjiayi 已提交
2174 2175 2176
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2177

F
fengjiayi 已提交
2178
        Args:
Y
yuyang18 已提交
2179 2180
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2181

Y
yuyang18 已提交
2182 2183 2184 2185
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2186 2187
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2188 2189 2190 2191

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2202 2203
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2204 2205
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2206

W
Wu Yi 已提交
2207
    def _get_desc(self):
Y
yuyang18 已提交
2208 2209 2210 2211 2212 2213 2214
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2215 2216
        return self.desc

X
version  
Xin Pan 已提交
2217 2218 2219
    def _version(self):
        return self.desc._version()

2220
    def clone(self, for_test=False):
Y
yuyang18 已提交
2221 2222 2223
        """
        Create a new, duplicated program.

2224

Y
yuyang18 已提交
2225 2226 2227 2228
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2229

Y
yuyang18 已提交
2230 2231 2232 2233
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2234 2235 2236 2237 2238
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2239 2240

        Args:
Y
yuyang18 已提交
2241 2242
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2243

D
dzhwinter 已提交
2244
        Returns:
Y
yuyang18 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2298 2299
        """
        if for_test:
X
Xin Pan 已提交
2300
            p = self._inference_optimize(prune_read_op=False)
2301
        else:
2302
            p = Program()
G
gongweibao 已提交
2303 2304
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2305
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2306 2307 2308
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2309 2310 2311 2312

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2313
            p._sync_with_cpp()
2314

W
Wu Yi 已提交
2315
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2316
        p._copy_data_info_from(self)
2317
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2318
        return p
2319

W
Wu Yi 已提交
2320
    def _prune(self, targets):
Y
yuyang18 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2336 2337 2338 2339 2340 2341
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2342 2343
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2344
                    # and we need to find the current op that generate this
2345 2346 2347 2348 2349 2350 2351 2352
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2353
                    t = t.op
2354 2355 2356 2357
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2358
                else:
2359 2360
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2361 2362 2363 2364

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2365 2366 2367
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2368
        res._sync_with_cpp()
2369 2370
        return res

X
Xin Pan 已提交
2371
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2372
        """
F
fengjiayi 已提交
2373 2374 2375 2376 2377
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2378
        3. change the :code:`is_test`
Y
yuyang18 已提交
2379 2380 2381
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2382
        Args:
X
Xin Pan 已提交
2383 2384
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2385

Y
yuyang18 已提交
2386 2387 2388 2389 2390 2391
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2392
        res = Program()
2393
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2394 2395 2396 2397

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2398
        if prune_read_op:
2399 2400 2401 2402 2403 2404 2405 2406 2407
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2408
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2409 2410

        # change all `is_test` attributes to True
M
minqiyang 已提交
2411
        for i in six.moves.range(res.desc.num_blocks()):
2412
            block = res.desc.block(i)
M
minqiyang 已提交
2413
            for j in six.moves.range(block.op_size()):
2414 2415
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2416
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2417 2418 2419
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2420
        res._sync_with_cpp()
2421 2422
        return res

2423 2424
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2425 2426 2427 2428 2429 2430 2431
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2432
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2433 2434 2435 2436

        Returns:
            Program: A deserialized program desc.
        """
2437 2438
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2439
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2440
        p._sync_with_cpp()
2441
        return p
Y
Yu Yang 已提交
2442

2443
    @staticmethod
2444
    def _construct_from_desc(desc):
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2460 2461
    @property
    def random_seed(self):
Y
yuyang18 已提交
2462 2463 2464 2465 2466 2467
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2468 2469
        return self._seed

Q
qiaolongfei 已提交
2470 2471
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2472 2473 2474
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2475 2476
        return self.desc.num_blocks()

D
dzhwinter 已提交
2477 2478 2479 2480 2481 2482
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2483
    def __repr__(self):
2484
        return self.__str__()
2485

Y
Yu Yang 已提交
2486
    def global_block(self):
Y
yuyang18 已提交
2487 2488 2489
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2490 2491
        return self.blocks[0]

Q
Qiao Longfei 已提交
2492
    def block(self, index):
Y
yuyang18 已提交
2493 2494 2495 2496 2497 2498 2499 2500
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2501 2502
        return self.blocks[index]

Y
Yu Yang 已提交
2503
    def current_block(self):
Y
yuyang18 已提交
2504 2505 2506 2507
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2508 2509
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2510
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2521
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2522 2523 2524
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2525 2526 2527 2528
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2529
    def _rollback(self):
Y
yuyang18 已提交
2530 2531 2532 2533 2534
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2535 2536
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2537
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2548 2549 2550
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2551
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2552

W
Wu Yi 已提交
2553
    def _copy_param_info_from(self, other):
2554
        """
2555
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2556

Y
yuyang18 已提交
2557 2558 2559
        Notes: This is a very low level API. Users should not invoke it
        directly.

2560 2561 2562 2563 2564 2565 2566
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2567
            raise TypeError("_copy_param_info_from should be invoked with "
2568 2569 2570
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2571
            raise ValueError("_copy_param_info_from should be invoked with two "
2572
                             "program, with represent the same topology")
W
Wu Yi 已提交
2573
        self.global_block()._copy_param_info_from(other.global_block())
2574

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2590
        self._parameters_on_pservers = other._parameters_on_pservers
2591
        self._endpoints = other._endpoints
2592
        self._ps_endpoint = other._ps_endpoint
2593 2594
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2595
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2596 2597
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2598

Y
yuyang18 已提交
2599 2600 2601
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2602 2603 2604 2605 2606 2607 2608
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2609
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2610 2611 2612
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2613
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2614
                             "program, with represent the same topology")
2615
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2616 2617 2618
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2619
    def list_vars(self):
Y
yuyang18 已提交
2620 2621 2622 2623 2624 2625
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2626
        for each_block in self.blocks:
2627
            for each_var in list(each_block.vars.values()):
2628 2629
                yield each_var

Y
Yu Yang 已提交
2630

Y
Yu Yang 已提交
2631
class Parameter(Variable):
2632
    """
2633
    Parameter is derived from Variable. A parameter is a persistable
2634
    Variable, and will be updated by optimizers after each iteration.
2635
    The training of a neural network is essentially the updating of
2636 2637
    its parameters.

2638
    Relative to a general Variable, a Parameter has several its own
2639 2640
    member variables:

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2653 2654
    """

Y
Yu Yang 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2665 2666 2667

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2668 2669 2670 2671
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2672 2673
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2674
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2675

W
wanghaoshuang 已提交
2676
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2677

F
fengjiayi 已提交
2678 2679 2680
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2681 2682 2683
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2684

F
update  
fengjiayi 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2699
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2700
            for attr_name in additional_attr:
2701 2702
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2703 2704
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2705 2706 2707 2708
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2709

Y
Yu Yang 已提交
2710
# program is a global instance.
Y
Yu Yang 已提交
2711 2712
_main_program_ = Program()
_startup_program_ = Program()
2713

2714

2715
def default_startup_program():
Y
Yu Yang 已提交
2716
    """
Y
yuyang18 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2726

Y
Yu Yang 已提交
2727 2728 2729
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2730
    return _startup_program_
2731

2732

2733
def default_main_program():
Y
Yu Yang 已提交
2734
    """
Y
yuyang18 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2744

Y
Yu Yang 已提交
2745 2746 2747
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2748
    return _main_program_
Y
Yu Yang 已提交
2749 2750 2751 2752 2753


def switch_main_program(program):
    """
    Switch the main program to a new program.
2754

Y
Yu Yang 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2769
    Switch the startup program to a new program
Y
Yu Yang 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2782
@signature_safe_contextmanager
Y
Yu Yang 已提交
2783 2784
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2785 2786 2787
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2788

Y
Yu Yang 已提交
2789
    Examples:
Y
yuyang18 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2800

Y
Yu Yang 已提交
2801
    Examples:
Y
yuyang18 已提交
2802 2803 2804 2805 2806 2807

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2808

Y
Yu Yang 已提交
2809
    Args:
Y
yuyang18 已提交
2810
        main_program(Program): New main program inside `with` statement.
2811
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2825 2826


W
Wu Yi 已提交
2827
def _get_var(name, program=None):
X
xuwei06 已提交
2828
    """
Y
yuyang18 已提交
2829
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2830

X
xuwei06 已提交
2831 2832 2833
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2834
        If None, default_global_program() will be used.
X
xuwei06 已提交
2835 2836 2837 2838 2839 2840 2841

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2842
    assert isinstance(program, Program)
X
xuwei06 已提交
2843 2844

    return program.global_block().var(name)
2845 2846


S
rename  
sneaxiy 已提交
2847
@signature_safe_contextmanager
2848 2849 2850 2851
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2852

2853
    yield
P
Paddle CI 已提交
2854

2855
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
2856 2857


S
rename  
sneaxiy 已提交
2858
@signature_safe_contextmanager
P
Paddle CI 已提交
2859
def _imperative_place_guard(place):
M
minqiyang 已提交
2860 2861 2862
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2863

2864
    yield
M
minqiyang 已提交
2865

M
minqiyang 已提交
2866
    _imperative_current_expected_place_ = tmp_place